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Abstract

Modern high performance computing systems provide an increasing amount of on-node
concurrency. However, not all applications profit from the high degree of parallelism,
leaving parts of the system unused. Since operating systems nowadays allow multiple
users to execute processes on the same machine simultaneously, a co-schedule between
the user’s processes can be consulted to remedy the idle hardware issue. This thesis in-
troduces customized lightweight data structures and management mechanisms thereof for
enabling co-scheduling of multiple processes’ tasks. The data structures are accessible
by any application in the system, offering great extensibility. Integration of the features
in the runtime system “HALadapt” and implementation of multiple scheduling mecha-
nisms along with suitable benchmarks show possible speedups of up to 136.22%, while
significantly increasing hardware load by making use of idle devices in the system in a he-
terogeneous scenario. When computing on homogeneous execution hardware, increased
fairness between tasks and improved hardware usage is enabled.
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1 Introduction

This chapter serves for the reader as an introduction to the topic of this thesis. The first
section gives a motivation for resolving the problem that is subject of this thesis, highlights
the drawbacks of the current situation and presents an approach to solve it. The second
section gives an overview of the goals of this thesis. The third section describes the
structure of the following work.

1.1 Motivation

The steadily growing demand for more computational capacity caused a shift in hard-
ware design. High Performance Computing (HPC) systems utilize manycore processors
and specialized hardware accelerators to upkeep meeting their performance requirements.
These systems are called “heterogeneous systems” [1]. However, this system configura-
tion arises the need for congruent software properties, ie. the running program needs to
inherit the property to scale well with the available degree of parallelism. Otherwise,
parts of the system might be left idle at runtime, resulting in inefficient hardware usage.
In order to achieve higher efficiency, multiple processes can be executed on the same
system node at the same time. This performs especially well, if the running processes
have mutually exclusive hardware requirements. However, this approach arises need for a
mechanism that manages execution of two independent processes on the same hardware,
called a “co-scheduling” of multiple processes. It is in the interest of HPC system opera-
tors to find the most efficient job schedule for their system, since it is a promising way to
minimize operating costs by maximizing overall throughput at a time.

Running applications simultaneously on the same system without considering its current
state, might arise various issues that could be prevented by a reasoned co-scheduling. In
case multiple applications in sum instantiate more threads than the underlying hardware
offers, the execution time on one core will be shared. On top of that, the processes will
inevitably begin to compete for cache lines, i.e. replacing each other’s data in the cache
at runtime. Problems like cache thrashing, thread starvation or threads failing to receive
sufficient amount of cache needed to produce considerable throughput may arise [2] [3].
In sum, this can lead to a significantly higher cache miss rate, hence a reduction of the
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1 Introduction

Instructions per Cycle (IPC), causing an overall higher application execution time [4].
In case multiple applications compete for the same hardware accelerator, eg. Graphics
Processing Unit (GPU), Intel Xeon Phi or Field Programmable Gate Array (FPGA), the
behavior depends on the hardware driver or the Application Programming Interface (API)
[5]. They might be scheduled, implying a serial execution equal to a First In, First
Out (FIFO) schedule, or share the accelerator. However, since it is up to the driver to
determine the behavior, it is hard to predict the actual runtime. In either case, the Central
Processing Unit (CPU) remains uninvolved in the meantime, due to the inefficient sched-
ule.

Task based runtime systems are suitable for tackling these problems. Incoming processes
register their tasks in the runtime system and provide multiple implementations which
target different hardware accelerators using various APIs (see 2.6.1). This allows for flex-
ible execution configurations and expands the solution space for efficient co-schedules.
Since new tasks can unpredictably arise over time, it is reasonable to make use of waiting
queues for every processing unit. Tasks store information about eg. for how long it will
occupy the processing unit in these queues such that other tasks can be scheduled with
regard to the state of the hardware. Storing information about alternative executions on
different hardware configurations together with the respective execution time allows for
scheduling diversity. The runtime system can use this information to calculate a useful
co-scheduling of all processes. This mechanism will be subject of this thesis.

1.2 Goals of this Thesis

This section gives a brief overview of this thesis’ goals. The approach to fulfill each of
them as will as their final accomplishment be reviewed in the following chapters of this
thesis.

Goal of this thesis is to implement a mechanism to find a co-schedule of multiple pro-
cesses in heterogeneous systems. This requires the processes to have the ability to detect
inefficient schedules and to agree with other instances on a co-schedule. This new sched-
ule is desired to be globally efficient. Preemption , ie. interruption of running executions,
is not designated to be implemented in this thesis.
The goals at a glance:

• Detect inefficient schedule of multiple processes’ tasks

• Determine point in time when to co-schedule, preventing large overhead

2



1.3 Thesis’ Structure

• Enable inter-process communication

• Create data structures that contain data required for a useful co-scheduling

• Introduce mechanism that finds a co-schedule using the customized data structures

• Implement these mechanisms into the runtime system “HALadapt”

• Demonstrate enabled speed up by running suitable benchmarks

1.3 Thesis’ Structure

This section provides an overview of the structure of this thesis. Every chapter will be
introduced briefly and their purpose is explained.

This first chapter, Introduction, contains the motivation for this thesis, which describes the
issue that is to be solved. The goals are concluded in bullet points. The second chapter,
Fundamentals assures the reader to have all information necessary in order to understand
the approaches made in this thesis. An historical overview of related facts is given to de-
scribe the circumstances that led over time to the problem that this thesis aims to solve. A
concluding problem statement is given and emphasized by an example. The third chapter,
State of the Art sheds light on scientific work done that is related to this thesis. It serves as
a literature review and compares other approaches and solutions with the ones presented
in this thesis. The fourth chapter, Approach contains theoretical concepts of the approach.
Design decisions met that will later be implemented are justified there. The fifth chap-
ter, Implementation shows the reader how the actual implementation of the solution to the
presented problem is done. It contains technical details, source code, explanations thereof
and comments. The sixth chapter, Evaluation servers as a proof of working implemen-
tation. Suited benchmarks are used to show the extent of the newly reached speedup.
The last chapter, Summary serves as a conclusion of this thesis. What could have been
achieved, what can be done, what can be improved is part of this chapter.

3
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2 Fundamentals

This chapter provides background knowledge to the reader that is required to understand
how the problem, that is tackled in this thesis, arose. For this, historical, electrical and
physical aspects in digital computing using transistors are considered. This reaches from
Moore’s Law and its consequences of Dennard’s Scaling and the failure thereof to Am-
dahl’s Law. Furthermore, the terminology used in this thesis is provided for clarity before
coming to the problem statement. Furthermore, explanation on the tools used for the
implementation is provided. Lastly, the runtime system on which this thesis bases is in-
troduced.

2.1 Moores’ Law

With the first working silicon transistor in early 1954 [6], the way was cleared for the
first integrated circuit, which was developed shortly after that in 1958 [7]. From there, a
race in scaling down transistor size was unleashed. Gordon Moore, co-founder of “N M
Electronics” [8] (today Intel) anticipated that transistor’s size scaling will follow a trend:
Complementary Metal-Oxide-Semiconductor (CMOS) Transistors will halve about ev-
ery 18 in size, leading to twice as many components on one single integrated circuit [9].
He amended his prediction later in 1975, saying the transistor count will double every
two years, instead of every 18 months [10]. This observation-derived prediction is today
known as “Moore’s Law”, without actually being a law. Figure 2.1 depicts the actual
transistor count (y-axis) of integrated circuits released over the last decades (x-axis). The
figure also shows a straight line: Moore’s amended prediction from 1975. It is astounding
how accurately this prediction can be used to predict the trend of future transistor count
per integrated circuit. There were a few other researchers predicting development of other
aspects of integrated circuits back in 1965. In contrast to Moore’s prediction, they were
not accurate enough to attract attention, or simply wrong [11].

In summary, Moore’s Law implies that the component count per integrated circuit will
rise exponentially over time. Nevertheless, this prediction is of theoretical nature and has
no upper bound. Clearly, there is to be an end to transistor’s size shrinking in reality. The
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Figure 2.1: Moore’s Law. 1

fundamental barrier of transistor size is the size of an atom [12]. However, researchers
face new problems even before such dimensions are even reached. Quantum effects cause
dynamic threshold voltages and oscillations of the transistor’s transconductance [13]. This
causes unpredictable behavior complicates keeping control over the transistor. Another
factor causing Moore’s Law to falter is the increasing cost for producing smaller tran-
sistors. Semiconductor companies have to build a new wafer factory for every newly
introduced technology node. A cost of about USD 20 billion is estimated for a 3nm wafer
factory. All companies that can’t afford this investment loose their market strength. From
their point of view, Moore’s Law can be seen as an economic disaster. Companies that
want to sustain their market strength need to invest their revenues in such a factory, ending
up with a no-win situation [14].

1Source: By Wgsimon , CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15193542
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2.2 Dennard Scaling

Device Count S2

Device Frequency S
Capacitive Device Power 1

S

Voltage 1
S2

Power Density 1

Table 2.1: Dennard Scaling as observed before leakage currents became crucial.

2.2 Dennard Scaling

The Term “Dennard Scaling” describes a property of integrated circuits. It implies that
for a given scaling factor S, the device count on one integrated circuit scales up by S2,
which is related to Moore’s Law. The frequency can be scaled up by a factor of S, because
smaller transistors can change their on/off-state faster and have shorter signaling paths.
Smaller transistors and shorter traces have a lower capacity, which scales down by factor
1
S

. This also means that lower voltage is sufficient to switch these capacities at the same
speed, allowing voltage to be scaled down by factor 1

S2 [15].
This observation applied quite well, before transistor’s size scaled down to dimensions
where leakage currents became crucial. As donated in equation (2.1), the overall power
consumption of an integrated circuit is composed by multiple terms. Until leakage cur-
rents needed to be considered, it was sufficient to pay regard to the power consumed by
changing charges in the capacitance of the circuit in order to estimate the overall power
consumption of an integrated circuit. Then, constant power density is derived by plugging
Dennard’s Scaling from table 2.1 into the factors composing Pswitching capacitance: CL (the
cumulative parasitic capacitance) is substituted with 1

S
, voltage with 1

S2 , N with S2 and f
with S. Expanding the product gives a constant as the result [16].

Pavg = Pswitching capacitance + Pshort circuit + Pleakage + Pstatic (2.1)
where

Pswitching capacitance =
1

2
· CL · Vdd2 ·N · f (2.2)

Pshort circuit = K · (Vdd − 2 · VT )3 · τ ·N · f (2.3)
Pleakage = (Isubthreshold + Ioxide + Idiode) · Vdd (2.4)
Pstatic = 0 (in CMOS circuits) (2.5)

However, as transistors shrunk below sizes 100nm, electrons increasingly began to tra-
verse the gate oxide, resulting in raising leakage currents [17]. In order to cope with that

7



2 Fundamentals

Device Count S2

Device Frequency S
Capacitive Device Power 1

S

Voltage ≈ 1

Power Density S2

Table 2.2: Actual power density since voltage no longer scales down.

issue, higher voltage can be applied to the transistor gate to close the transistor channel
more firmly. This solution has a downside: the applied voltage can no longer be scaled
down, as donated in table 2.2. This means the failure of Dennard Scaling.

Having a polynomial growth in power density leads to problems in heat dissipation. Since
Ioxide increases with higher temperatures, even more heat is generated. Temperature run-
away is the consequence, eventually resulting in catastrophic failure [18]. This thermal
problem also caused a stop in frequency scaling, which had been the best way to improve
performance until then.
Consequently, in order to keep up with the increasing demand of computational perfor-
mance, parallel architectures are consulted. Thanks to Moore’s Law, which has not (yet)
failed, manufacturers are enabled to place more, smaller transistors on the same area, al-
lowing duplication of execution pipelines per chip which can process in parallel. Such
architectures increase the Instruction Level Parallelism (ILP) and therefore scale up per-
formance without increasing frequency. In a nutshell, parallelism is the modern way
to achieve higher performances without drastically increasing power density. To deliver
considerable computing capabilities, HPC system nodes make full use of parallel archi-
tectures by being equipped with multicore or manycore CPUs and specialized accelerators
like GPUs, Xeon Phis, Application Specific Integrated Circiut (ASIC)s or FPGAs [19].

2.3 Amdahl’s Law

Instructions of a computational problem P can be classified into two groups: those parts,
that profit from parallelism and those, which do not benefit from it. Even embarrassingly
parallel problems [20] suffer from for example initialization overhead or Input / Output
(I/O) accesses that can not be executed in parallel. Consider T to be the total execution
time of P and p to be the portion of P that benefits from a parallel execution. Then, T
is can be written as T = (1 − p) · T + p · T . By definition, only the latter part of the
sum benefits from parallelism. Let s be the factor of parallelism applied to P . Clearly,
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2.3 Amdahl’s Law

the equation becomes T (s) = (1− p) ·T + p
s
·T . Hence, the speedup S can be calculated

using the following equation:

S(s) =
T

T (s)
=

(1− p) · T + p · T
(1− p) · T + p

s
· T

=
1

(1− p) + p
s

Therefore, for big s, the equation becomes:

lim
s→∞

1

(1− p) + p
s

=
1

(1− p)

This implies that the speedup of P converges to 1
(1−p) , no matter how much parallelism is

used to solve P [21].
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2 Fundamentals

2.4 Terminology

This section explains the meaning of technical terms used throughout this thesis. These
explanations are provided for clarity and consistency within this thesis and might not ap-
ply to any other lectures. These explanations here are in context of computing.

• Kernel: Code that defines the actual calculations to be done. Accepts a well defined
set of input variables, which also can be empty. The Kernel is considered to be often
a computationally intensive piece of code.

• Thread: Logical context of a kernel execution. Is managed, eg. paused, inter-
rupted, continued by the operating system scheduler transparently for the user.
Threads share the same memory if they belong to the same process. A thread is
sometimes referred to as a Light-Weight Process (LWP).

• Task: A user provided set of at least one kernel call with a well defined set of
input data, which can also be empty. There can be different kernel calls within one
task, but they only differ in the targeted hardware, i.e. the same functionality is
completed on the CPU, or an accelerator etc. A task needs at least one thread in
which the kernel(s) reside(s). Tasks are considered to be units of computational
work that the user wants to have completed.

• Process: One process is created for each program call. A process consists of at
least one task and therefore of at least one thread. A process receives its own piece
of memory which its threads are allowed to access. This memory is called “local
memory”.

• Program: Sequence of instructions, given in source code. May include creation
of arbitrary many tasks or direct kernel calls. Accepts input data from the user or
another program, which is then passed to tasks or to kernels directly. Manages data
flow and presents computational output to the user or other programs.

• Library: Set of features that the programmer can call within his program.

• Runtime System: A library that is designed to manage task execution. May ab-
stract underlying hardware to ease the programming flow. Processes can submit
their tasks to a runtime system which handles routines like task execution, memory
transfers, scheduling, etc.

• Application: A program call initiated by the user. The input data can be read from
the keyboard (so called “standard in”, or “stdin”) or may originate from a data file
on the hard drive.

• Co-Scheduling: Procedure to find an execution sequence of tasks that belong to
multiple processes.
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Figure 2.3: Visualized execution flow annotated with terminology of this thesis
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2.5 Problem Statement

HPC systems nowadays provide a high degree of parallelism in order to achieve high
performance. However, as pointed out in section 2.3, computational problems can not
benefit from the provided parallelism. In order to maximize system throughput, multiple
processes are executed on the same node to utilize all available hardware. This practice
requires the processes to be co-scheduled such that a desired optimization goal can be
achieved. This procedure may target various aspects like system throughput, energy effi-
ciency, total system load etc.

If a HPC runtime system is not capable of co-scheduling applications, inefficient hard-
ware usage is very likely to occur. Imagine a scenario: a user U1 creates an instance of
a runtime system at a point τ1 in time. This instance, or process, submits 5 tasks into the
runtime system which is not capable of co-scheduling tasks of multiple processes. The
tasks could run on different execution devices, but since all available accelerators are idle,
the scheduler decides to enqueue all tasks in the execution device providing the highest
throughput.
At another instance in time, τ2 > τ1, a different user U2 creates an instance of the runtime
system on the same machine and enqueues 5 tasks that can only run on the accelerator
that has been allocated by the tasks of U1. Without capability of co-scheduling tasks of
multiple processes, the submitted tasks by user U2 either have to wait until the tasks of U1

are completed or have to share the same device, slowing both executions down.
If the runtime system is capable of co-scheduling multiple processes, the tasks of U1 that
are not yet running could be transferred to execution devices for which they also offer
an implementation, unblocking the execution of U2’s tasks. The slowdown of multiple
processes running together in the same system is referred to as “co-run penalty”.

2.5.1 Exemplary Scenario

Let S be a heterogeneous system made up of 8 CPUs and one GPU. Let Pi with i ∈ {1, 2}
be processes. Further, let Pi j be a task in process Pi, with j ∈ {1, ..., 5} and let T (Pi j, n)
be the execution time of task j in Pi, where n is the number of CPU threads used for
executing Pi j . The unit is milliseconds and n ∈ {1, ..., 8}. If no value for n is specified,
execution on the GPU is assumed. Let S(Pi τ , n) be the speedup of T (Pi j, n) compared
to the execution time T (Pi j, 1). If no n is specified, GPU execution is assumed once
again. Let Ttotal be the time it takes for all processes Pi to have their tasks Pi j executed.
Let P1 and P2 be two processes that will be running in S. Each of these processes consist
of 5 tasks Pi{1,...,5} that are to be executed. P2 j do not offer an implementation for the
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2.5 Problem Statement

GPU. Values for n, T (Pi j, n) and S(Pi ju, n) are given in table 2.3.

Let S have no running tasks initially; all hardware devices are idle. Assume P1 being the
first process to submit its tasks P1 jinto the runtime system. P1 will query the status of
the available execution units, and, in order to minimize its execution time, allocate all 8
CPUs for processing its tasks P1 j since this provides the highest throughput.// P2 submits
its tasks P2 j afterwards. Like P1, P2 queries the status of the system and thereby acquires
the information that all 8 CPUs are in use currently. Consequently, since the tasks P2 j
do not support an execution using the GPU, it has no other options than to either wait,
or share the CPUs. If P2 waits until the execution of P1 j are completed and afterwards
makes use of all 8 CPUs, Ttotal will be 5 · 115.801ms + 5 · 328.102ms = 2219.515ms.
The GPU is left idle in the meantime. Hence, the total system load is either 8/9 ≈ 88%,
or, if the CPU is seen as a monolithic device, 1/2 = 50%.
P2 also has the option to share the 8 CPUs with P1 j . Assuming sharing one CPU
among two processes causes a doubled execution time for each task, the 8 CPUs are
shared for 2 · 5 · 115.801ms = 1158.01ms until P1 j are completed. P2 j is run-
ning for another 5 · 328.102ms − 5 · 115.801ms = 1061.505ms. Therefore, Ttotal =
1158.01ms + 1061.504ms = 2219.515ms ignoring cache issues that might cause addi-
tional co-run penalty.
If S had the ability to co-schedule P1 j and P2 j , shorter execution times could be achieved,
since all tasks that are not running can be transferred to other execution devices in order
to unblock waiting tasks. Since we assume in this example, that P1 has submitted its tasks
P1 j before P2 submitted P2 j , at least task P1 1 is already running on 8 CPUs. This task
can not be moved over to the GPU without preemption in order to unblock P2 1. How-
ever, the other tasks P1 {2,3,4,5} can be moved to the GPU, allowing earlier execution of
P2 j . That means that P2 j can begin their execution on 8 threads, as soon as P1 1 finishes
the execution and its succeeding tasks are then transferred to the GPU. P2 j ideally can
then start their execution on 8 threads after 115.801ms. P1 {2,3,4,5} then finish their execu-
tion after 1 · 115.801ms + 4 · 201.337ms = 317.139ms. P2 j finish their execution after
1 · 115.801ms + 4 · 328.102ms = 1756.311ms which yields a speedup compared to the
non-co-scheduled execution of 2219.515ms

1756.311ms
= 126.37%.

Besides the overall speedup of P1 j and P2 j , the system’s load is increased from 8
9
≈ 88%

to 8
9
· 115.801ms
1756.311ms

+ 1 · 4·201.337ms
1756.311ms

+ 8
9
· 1756.311ms−(4·201.337ms+115.801ms)

1756.311ms
≈ 93.98%

Or, if the CPU is seen as a monolithic device, the system’s load is increased from 1/2 =

50% to 1
2
· 115.801ms
1756.311ms

+ 1 · 4·201.337ms
1756.311ms

+ 1
2
· 1756.311ms−(4·201.337ms+115.801ms)

1756.311ms
≈ 72.92%

Other scenarios are possible, in which it is useful to the split amount of allocated CPUs
among multiple processes. Since tasks do not benefit from arbitrarily large portions of
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Device n T (P1 τ1, n) S(P1 τ1, n) T (P2 τ2, n) S(P2 τ2, n)
CPU 1 456.974 100.00% 2568.818 100.00%
CPU 2 231.780 197.15% 1285.409 199.84%
CPU 3 164.420 277.78% 858.272 299.30%
CPU 4 133.707 341.77% 645.204 398.15%
CPU 5 124.008 368.50% 517.763 496.14%
CPU 6 120.069 380.59% 433.136 593.07%
CPU 7 116.824 391.11% 372.971 688.73%
CPU 8 115.801 394.62% 328.102 782.93%
GPU - 201.337 226.96% - 0%

Table 2.3: Exemplary execution times for P1 τ1 and P2 τ2 in S

GPU
CPU

Submission
of P's tasks1

Submission
of P's tasks2

Termination
of P's tasks

Termination
of P's tasks2

1

idle

0ms 500ms 1000ms 1500ms 2000ms

2 4P 2 5P2 3P2 2P2 1PP1 1 P1 2 P1 3 1 4 1 5PP

Figure 2.4: Example schedule without process co-scheduling.

parallelism, a co-scheduling can also yield a speedup for homogeneous computing sys-
tems [22].

2.6 Software

This section describes the software that is used to realize parallel programs. Also, the
runtime system is introduced in which the implementation of co-scheduling is integrated.
The programming language used in this thesis is C.
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idle

0ms 500ms 1000ms 1500ms

P1 1

P1 2 P1 3 P1 4 P1 5

P2 1 P2 2 P2 3 P2 4 P2 5CPU
GPU

Submission
of P's tasks1

Submission
of P's tasks2

Termination
of P's tasks

Termination
of P's tasks2

Figure 2.5: Example schedule with process co-scheduling.

2.6.1 Programming Parallel Applications

The commonly used API for making use of parallelism in a manycore CPU is Open
Multi-Processing (OMP) [23]. It provides simple commands to automatically distribute
computational work to all available CPU cores and bases on a fork-join model. Bench-
marks that are later be used for evaluation make, among other APIs, use of OMP.
To target parallelism between computing nodes, Message Passing Interface (MPI) can be
used. It is a standardized description of routines that allow message passing between mul-
tiple computing nodes [24]. However, this thesis focuses on solving problems within one
single node, therefore MPI is not used or further explained.
Open Computing Language (OCL) is the solution for targeting various heterogeneous
accelerators [5]. It is used throughout the evaluation to execute code on the GPU, but
could also be run on any other hardware accelerator installed in the system. Besides an
implementation of the benchmarks in OCL, another API, Computing Unified Device Ar-
chitecture (CUDA), is used to target the GPU. CUDA is an API developed by Nvidia
which enables the programmer to make use of Nvidia GPUs’ computational power.

2.6.2 Runtime System HALadapt

HALadapt [25], is a runtime system developed at Karlsruhe Institute of Technology (KIT),
designed to reduce the complexity in application programming for heterogeneous hard-
ware architectures. It is written in C language and designed to run on Linux operating
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system. Portability to Microsoft Windows is partly given. HALadapt allows multiple im-
plementations for the same kernel (so called proxies) in order to target various computing
architectures. HALadapt abstracts the underlying hardware and has the ability to de-
tect which task-to-execution-device mapping provides the largest throughput. A Directed
Acyclic Graph (DAG) task graph is generated from task mapping, which is then started
autonomously. Mandatory memory transfers, that arise when accelerators are used for
execution, are abstracted to reduce the programmer’s memory management overhead.
HALadapt provides waiting queues for every execution unit installed in the system in the
shared memory. They are used for inter-process hardware awareness, ie. other HAL-
adapt instances can query which devices are currently in use and take this information
into account when it comes to scheduling its tasks [26].

2.6.3 Shared Memory

Co-scheduling tasks of multiple processes inherits the need for inter-process communica-
tion. Information between the processes needs to be exchanged. Since processes receive
their own region in the host memory, variables in the source code can’t simply be ac-
cessed by all processes. Therefore, inter-process communication can not be achieved
without further effort. In order to cope with this issue, Portable Operating System Inter-
face (POSIX) systems expose a device mounted at /dev/shm that can be accessed by all
processes in the system. The file system is tempfs. As depicted in figure 2.6, the shared
memory concept allows multiple processes to map the exact same region of memory into
their logical address space. Effectively, accesses to that mapped region are no slower
than a regular memory access into the region that has been exclusively assigned by the
operating system. However, since multiple processes can now access the same physical
memory addresses asynchronously, data corruption may occur. Locking mechanisms can
be consulted in order to prevent this circumstance, which introduces an overhead to this
approach.

Physical MemoryLogical Memory
of Process n

Logical Memory
of Process m

0x1337c0ffee08

0x1337c0ffee0c

0x1337c0ffee0e

0x1337c0ffee10

0x1337c0ffee12

0x1337c0ffee14

0x007dea7

0x007deab

0x007dead

0x007deae

0x007deb1

0x007deb3

0x420beeb

0x420beed

0x420beef

0x420bef1

0x420bef3

0x420bef5

Shared Memory
(mapped)

0x007dea9

Shared Memory
(mapped)

0x420bef7

Shared Memory
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Figure 2.6: Scheme of the shared memory concept
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3 State of the Art

The recently increased presence of heterogeneous computing systems and their efficient
usage has made up a new field of research. This chapter presents and discusses works pub-
lished in the literature that is relatable to the topic of this thesis. It includes scheduling
in heterogeneous systems, also with multiple optimization targets and strategies, runtime
systems for heterogeneous architectures and shared memory utilization for inter-process
communication. Approaches made in these publications are assessed and, if considered
useful, captured for the approach in this thesis. Differences from the presented literature
to this thesis are pointed

3.1 Runtime Systems

Co-scheduling in heterogeneous computing systems requires the ability to execute sub-
mitted tasks on different execution devices. Since offloading computational load to an
accelerator introduces overhead like memory management and transfers, it is advised to
use a runtime system that abstracts such duties. StarPu [27] is a runtime system devel-
oped by Augonnet et al. at the university of Bordeaux. StarPU provides a high level
execution model for heterogeneous computing and abstracts memory transfers from host
to accelerator and vice versa. Its library based approach offers users the ability to im-
plement the same kernel targeting multiple execution devices and accelerators. It also
assures coherency between these memories. It is designed to allow the user to construct
and refine own scheduling algorithms. This feature is presented to be the main subject of
the work. However, StarPU does not support co-scheduling of multiple StarPU instances
on one computing node.
Closely related to StarPU is HALadapt [25], a runtime system for heterogeneous comput-
ing, invented by Kicherer et al. at KIT (see section 2.6.2). Unlike StarPU, HALadapt does
not predominantly focus on offering user-adjustable scheduling mechanisms. They can be
added as a plugin by the user. HALadapt rather focuses on maximizing system through-
put by taking measurements of past executions into account. HALadapt constructs a DAG
from all submitted tasks, which also contains implicit tasks like mandatory memory trans-
fers for the desired execution. When it comes to co-scheduling applications, HALadapt
makes use of shared waiting queues for each execution device in the system. Nevertheless,
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HALadapt lacks capability for re-ordering the entries in the waiting queues, and therefore
can not ensure efficient co-scheduling of multiple processes. Jobs either have to wait until
the waiting queues are processed and then enqueue their desired schedule, or agree on a
schedule using the hardware devices that are not busy at this point[26]. This implies that
only an useful schedule within the first started process can be found with HALadapt.
Another approach for seamlessly migrating tasks between hardware accelerators is clSURF
[28], an OCL implementation of Open source Speeded Up Robust Feature (OpenSURF)
[29]. clSURF introduces a so called work pool, which consists of multiple task queues.
Enqueued tasks are equipped with meta data like estimated completion time, which is
used by a scheduling algorithm to assigns the tasks to computing devices. Authors state
that there is only one static scheduling mechanism, where the programmer has to decide
which kernel will be executed on which device currently. A dynamic scheduler is left for
future work. The so called resource management takes care for seamless migration of
tasks between computing devices on demand. However, the scheduling scope of clSURF
is once again at task level and no inter-process communication is realized. Therefore,
clSURF is not capable of co-scheduling multiple instances of itself.

3.2 Inter-Process Communication

So far, only related work that does not support co-scheduling of multiple processes has
been introduced. An implementation that supports such mechanisms is schedGPU [30].
This work is designed to co-schedule multiple processes to the same GPU while ensur-
ing that no process is running out of memory. There are two approaches for inter-process
communication presented. The first one is a client-server model where a schedGPU server
manages GPU memory. Applications then act as a schedGPU client and have to request
memory for execution from the schedGPU server. The second approach presented for
inter-process communication is using shared memory in the host system. The authors
prefer this approach since there is no single point of failure, ie. the schedGPU server.
Data stored in the shared memory is: accessible GPU memory in the system, utilized
portion thereof, identifiers of running processes that consume GPU memory and a queue
holding all processes that requested more memory for execution that was available when
being started. In contrast to the subject of this thesis, schedGPU only regards execution
on the GPU and does not support migration of tasks between various accelerators in order
to increase system’s throughput.
Newsom et al. also presented co-scheduling at process level [22] by decomposing the
processes’ tasks into tasks which are then co-scheduled. Inter-process communication is
achieved by using MPI. The focus of this work is on maximizing energy efficiency of
HPC clusters, which differs from the subject of this thesis. Also, only execution on CPU
cores is regarded. Nevertheless, job re-ordering is presented. For that, authors of [22]
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introduce a simulator which evaluates all permutations of enqueued jobs and choose the
execution sequence which provides the highest energy efficiency.
Another work that makes use of shared memory to co-schedule multiple processes is pre-
sented by Jiménez et al. in [31]. Like HALadapt, this work also utilizes a history based
scheduling mechanism in order to predict process’ waiting time when being enqueued.
Besides that, a first-free scheduling is provided as an alternative. The main difference
between the work by Jiménez et al. to this thesis is the support for OCL. This means
that their work cannot be used in combination with accelerators like FPGAs, Xeon Phis
or GPUs by the manufacturer Advanced Micro Devices (AMD).
VarySched [32] is an implementation of a process co-scheduler for heterogeneous com-
puting architectures. The inter-process communication is achieved using Library for Ac-
celerated Math Applications (LAMA) [33], an open source C++ library for sparse linear
system solves. Offloading inter-process communication to this library omits the need for
an own implementation, but binds VarySched’s capabilities to those of LAMA, meaning
that VarySched can only execute what LAMA is designed for, ie. solving sparse linear
systems. This confinement is the main difference to this thesis that is designed to co-
schedule any kind of computational job.

3.3 Co-Scheduling Algorithms

Publications like [34] and [35] by Jiang et al. proved that finding an optimal co-scheduling
is NP hard if the jobs are subject to be scheduled on more than 3 CPU cores. There-
fore, finding an optimal solution using brute force can, depending on the input data,
take unreasonable time. For proving the problem’s NP-hard property, a reduction to
Multidimensional Assignment Problem (MAP) [36] is done. This proof also applies to
heterogeneous computing systems, since the available accelerators can theoretically also
be regarded as a regular execution device from the scheduler’s point of view. Hence,
only approximately optimal solutions can be found in polynomial time 1 in both scenar-
ios, a heterogeneous computing environment, and the Chip Multiprocessor (CMP) setup
regarded by Jiang et al. They present multiple approaches for finding approximately op-
timal solutions including Integer Programming Model (IPM) and various heuristics: a
greedy algorithm, a hierarchical approach that divides the problem into smaller portions
that can be solved efficiently and at last, a local optimization algorithm. The presented
results reveal that the solutions found using heuristic algorithms can be close to the op-
timal solution. This work has been improved by Tian et al., by also regarding jobs with
different lengths and job migration [37]. Nevertheless, these publications do not regard
heterogeneous environments which offer accelerators that cause overheads like memory

1Assuming P 6= NP
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transfers.
Another implementation of job co-scheduling is presented in [38]. In this work, effort
is spent to find an optimal co-schedule of multiple processes in computing clusters. The
approach made focuses on bandwidth and memory usage of the jobs. The work does
not regard heterogeneous computing architectures and the proposed scheduling algorithm
focuses on dividing jobs into processes which are then distributed over computing nodes
so that the communication overhead is minimized. Minimizing execution time could be
implied by this, but is not explicitly pursued to be achieved.

3.4 Determination of Co-Scheduling

This thesis also examines at what point a co-schedule should be found in order to achieve
a higher throughput in heterogeneous computing systems. However, no work in the lit-
erature can be found that also examines this particular question. Therefore, this thesis
contributes to find an answer to that question.
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This chapter describes the approach made in this thesis to reach the goals presented in
section 1.2. Approaches from related work (see chapter 3) that have been proven to be
useful are inherited in this approach. Also, modifications thereof and other necessary
implementations are specified here. Required customized data structures are introduced
and design decisions are justified. First, the question on when to arrange a co-scheduling
is regarded. After that, in section 4.2, the management of information needed to find a co-
scheduling is discussed. Customized data structures are presented in this section. After
that, the co-scheduling flow is described. Lastly, the approach for the actual co-scheduler
is given.

4.1 Determination of Co-Scheduling

The first issue to address is the question when to co-schedule processes’ tasks to execution
devices. Since the co-scheduling process can introduce considerable overhead, it is useful
to elaborate multiple approaches to the question if a co-schedule is useful in a given
situation. The possibilities regarded in this thesis to answer this question are as follows:

• Always: A naive approach is to calculate a co-scheduling every time a new task is
submitted by any process into the system. This ensures that no inefficient schedules
may occur among all tasks that are not running (preemption is not designated in
this thesis). Nevertheless, significant overhead can be expected to accompany this
procedure.

• Hardware Contention: A more suitable idea is to calculate a co-schedule for wait-
ing applications as soon as at least one of them is unable to allocate the desired
hardware resources that promise highest throughput. What execution devices are
desired by an application can be ascertained by profiling and logging execution
times. This approach also ensures that the system’s throughput is maximized at
any point of time. Nonetheless, the overhead caused by the co-scheduling process
might be greater then the thereby enabled speedup.

• Speedup: Another approach that avoids the aforementioned circumstance is to es-
tablish awareness for the additional cost caused by the re-scheduling as well as for
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the thereby enabled speedup. With these pieces of information, a re-scheduling pro-
cess can be omitted, if its cost has been detected as not amortizable by the possible
speedup. The cost of a re-scheduling process can be derived experimentally and
the enabled speedup can be optimistically obtained by profiling the application’s
performance on different execution devices. However, the actual speedup enabled
through co-scheduling the processes’ tasks can be only obtained by calculating the
very same thing. This causes exactly the overhead whose omission was aimed for.
Hence, an optimistic estimation can be pursued by assuming that all processes’
tasks receive the hardware on which they have the shortest runtime.

• Waiting Time Amortization: A fourth approach is to re-schedule processes’ tasks
if all execution devices are occupied for at least the time it takes to calculate a
co-scheduling. In this case, the overhead caused by calculating a co-schedule is
concealed by waiting time of the afflicted tasks.

4.2 Co-Scheduling Information Management

The next concern to treat is the realization of inter-process communication. As presented
in chapter 3, multiple possibilities exist. Comprising the gives facts of chapter 3, a rea-
sonable way is to make use of the shared memory in the system. Therefore, the imple-
mentation of inter-process communication in this thesis uses the shared memory.
An easy way to co-schedule the tasks of all processes is to copy the local task data struc-
tures to the shared memory. Then, the process that initiates a the co-scheduling has access
to the task data structures of all processes, allowing it to forward the information from the
shared memory to its internal scheduler in order to co-schedule all processes’ tasks. How-
ever, copying the task structure of HALadapt, the runtime system in which this mecha-
nism is to be integrated, would cause an enormous overhead and need for management
due to the extent of HALadapt’s task data structure. This issue is further explained in
section 5.2.2. Instead, customized data structures are stored in the shared memory that
hold merely the data required to find a co-schedule. This comprises a management file
(called CSIMF) and the actual data files (called CSI files). Details on them are presented
in the following subsections.

4.2.1 The Shared Memory: Implicit Application Independent
Communication Interface

As mentioned, this thesis makes use of the shared memory for inter-process communica-
tion. This
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Figure 4.1: CSIMF and CSI files in the shared memory

4.2.2 Data Structure Co-Scheduling Information Management
File

In order to realize the co-scheduling flow, information management and process coordi-
nation is required. These tasks are imposed on a so called “Co-Scheduling Information
Management File”, in short CSIMF. This file can only exists once per node and resides
in the shared memory. It has a static name so that every instance of HALadapt can easily
find and access it.
The CSIMF provides mutual exclusion capabilities for itself and all CSI files respec-
tively. This is required since multiple process might try to access or modify the data in
the CSIMF or any CSI file at the same time asynchronously.
Besides the access management, the CSIMF also stores information needed for processes
to find other processes’ CSI files in the shared memory. If a CSI file is generated by any
process, it needs to be registered at the CSIMF. This is done by depositing an unique
identifier in the CSIMF that is equal to the name of the CSI file. This ensures that every
process knows what CSI files exist in the shared memory. The submitting process needs
to stay aware of the submitted CSI files in order to remove them from the CSIMF if the
corresponding CSI file no longer exists.
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4.2.3 Data Structure Co-Scheduling Information

The CSI files hold all information needed to co-schedule the tasks of multiple processes.
One CSI file is generated for each task in a process. The contained pieces of information
are:

• Execution time of every possible mapping to execution devices in the system that
this task supports

• Dependencies on other tasks

• Reverse dependencies, ie. the tasks that depend on this task

If a task does not provide an implementation targeting a specific accelerator available in
the system, the CSI does not have an entry for this particular accelerator. Meaning that the
CSI entries are populated dynamically. These stored pieces of information are used by the
co-scheduler in order to find a useful co-scheduling of the processes’ tasks. The presence
of an CSI in the shared memory implies that the corresponding task is not running yet,
and is subject to a re-scheduling. Tasks delete their CSI as soon as the execution thereof
is started. Thus, the absence of a CSI implies that the task is either running or has its
execution finished already.

4.3 Co-Scheduling Flow

The co-scheduling flow is depicted in figure 4.2. Incoming processes store for all of their
tasks CSI files in the shared memory. They are designed to do this, even if a co-schedule
is not desired. This ensures that other processes can immediately acquire the information
needed for a co-scheduling, without causing overheads like inter-process signaling, by
requesting already scheduled processes to store their CSIs afterwards.
After the CSIs are stored in the shared memory, the incoming process needs to determine,
whether a co-scheduling is necessary or not (see 4.1).
If so, all entries from the shared memory waiting queues that are not marked as “in ex-
ecution” are removed. This prevents an old schedule from being executed. Afterwards,
the co-scheduler is engaged and supplied with required information from the CSIs. All
tasks that have an CSI in the shared memory are implicitly waiting to be executed and
therefore are subject for a co-scheduling. The co-scheduler then stores its result to the
shared memory waiting queues and notifies all processes that their schedule has changed,
to ensure that they will adhere to the newly assigned schedule.
From this point on, the flow is equal to the procedure in case no co-scheduling is desired.
The processes execute their tasks with the assigned processing units and are removed from
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the shared memory waiting queues as soon as they have finished. The corresponding CSIs
are deleted at this point, too.

4.4 Co-Scheduling Algorithms

As shown in [35], the co-scheduling problem is NP hard if the number of processing
units is greater than two, which is usually the case in heterogeneous computing systems.
Since finding an optimal solution can take considerable amount of time with increasing
magnitude of problem size, a heuristic based approach will be pursued. This section
briefly describes some algorithms that can be used to find a co-scheduling.

4.4.1 Round Based Greedy Algorithm

The algorithm that is implemented in this thesis can be seen as a round based greedy
scheduling algorithm for co-scheduling tasks in heterogeneous systems. Unlike the closely
related Heterogeneous Earliest Finish Time (HEFT) scheduler [39], it allows to configure
the criterion used to decide which task may allocate an accelerator in different situations.
It can be chosen between the runtime of the task or the amount of succeeding tasks. Sit-
uations in which this criterion is applied can be either hardware contention or when free
accelerators are distributed to tasks that can make use of them.
However, like all heuristic algorithms have in common, this scheduler is prone to local
extrema, whilst offering a reasonable runtime for solving a NP-hard problem.
In order to make the scheduler more unique and fit the situation, some assumptions are
made for finding a solution:

• Multiple independent tasks ready for execution: Since the scheduler is designed
to co-schedule tasks of multiple processes, we can assume that there are tasks to co-
schedule which do not depend on each other, as they belong to different processes.

• Accelerators provide higher throughput: Available heterogeneous computing
hardware offers specialized execution units which serve for shorter runtime than
on the CPU. The scheduler therefore treats these accelerators separately to keep
their usage high.

• Memory transfers are expensive: The transfer of data to and from the accelerator
is also taken into account and, since considerable overhead might occur, tried to
be avoided. Since this assumption might be conflicting with the preceding one,
the scheduler provides a feature called “stickiness”. Further details are provided in
section 5.4.3.
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4.4.2 Heuristic Evolutionary Algorithm

Another approach for approximately solving NP-hard problems in reasonable time are
heuristic evolutionary algorithms [40]. Similar to related iterative algorithms, like the
Metropolis Algorithm or Simulated Annealing [41], evolutionary algorithms may over-
come local extrema by randomly elaborating solutions which do not provide a better
solution than the one started with. The main difference to Simulated Annealing is that
evolutionary algorithms do not work on a single solution, they work on a set of possible
solutions. This set is called a population to which three main operations can be applied
iteratively:

• Selection: A fitness function is applied to all individuals in the current population in
order to quantify their respective fitness. Based on that, individuals can be discarded
for future populations. The amount or the threshold can be chosen randomly or
adjusted over time. This might lead to convergence to the optimal solution over
many iterations.

• Mutation: Individuals in the population are modified. The modification’s magni-
tude can be chosen randomly or adjusted over time. This might lead to completely
new individual’s characteristics and therefore supplies the population with diversity,
allowing to overcome local extrema.

• Crossover: New individuals are created based on the characteristics of other indi-
viduals. What parts are transferred into the next generation can be chosen randomly,
as well as the amount of transferred characteristics. The thereby created individuals
are referred to as “children”.

4.4.3 Random Mapping Algorithms

An simple approach is to generate a random mapping from tasks to execution devices for
which the task offers an implementation. This approach can find a perfect mapping in
constant time. However, the probability for this is vanishingly small. A random mapping
algorithm, unlike the round based greedy algorithm, does not have the disadvantage to
be likely to run into a local extrema. Therefore a random mapping algorithm can not get
stuck in a local optimum that leads to inability for finding the desired global one.

This thesis presents, along with the plain random mapping scheduler, another scheduling
approach that bases on randomness. This scheduling algorithm referred to as “enhanced
random mapping scheduler”, which is aware of the available hardware in the system, as
well as of the maximum amount of forward dependencies in between the tasks that are
scheduled. The algorithm is allowed to distribute all hardware to the tasks as many times
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as the maximum amount of forward dependencies among the tasks. The actual mappings
are chosen randomly and the thereby allocated hardware is summed up. If the sum ex-
ceeds the allowed amount of allocated hardware, the mapping is discarded. The enhanced
random mapping scheduler repeats this procedure for a specific amount of times and then
applies the mapping found with the shortest runtime.

4.4.4 Brute Force Algorithm

A straightforward way to optimally solve a problem is to generate and compare all pos-
sible solutions. This ensures that the optimal solution is found, but is likely to produce
significant overhead in terms of runtime and memory requirement for the problem sizes
that are of interest. For example, there are

∑48
i=1

(
48
i

)
= 248− 1 = 281, 474, 976, 710, 655

ways to execute an OMP task on a machine with 48 threads. A CPU running at 3GHz
would need more than 26 hours to count to that number. The generation of that many
scheduling candidates is expected to take even longer. Another concern is the memory re-
quirement. The size of a candidate data structure in HALadapt is 160Bytes and contains
5 pointers to other required memory constructs, of which 3 are lists of variable length.
Taken only the plain scheduling candidate construct into account, more than 4.19GiB of
memory in the host machine are required to store all candidates of this single task.
Due to these circumstances, calculating the optimal solution is not pursued in this the-
sis.
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This Chapter describes details of the actual implementation of the enhancements of HAL-
adapt, which comprise the determination of need for a co-scheduling in all four presented
variants, the implementation of inter-process communication, the data structures manag-
ing and holding the co-scheduling information, the scheduler itself that makes use of the
information in the shared memory together with its features and the integration in HAL-
adapt.

5.1 Determination of Co-Scheduling

This section presents the implementation of the four different determination procedures
for a co-scheduling need. Process initiate calculation of a process-wide co-scheduling
based on the decision of the four strategies.

5.1.1 Configurability

The user can configure which of the four strategies is used to determine the co-scheduling.
This is done by setting one of the flags -DDLS CO SCHEDULING STRATEGY ALWAYS,
-DLS CO SCHEDULING STRATEGY HARDWARE CONTENTION,
-DDLS CO SCHEDULING STRATEGY SPEEDUP or
-DDLS CO SCHEDULING STRATEGY AMORTIZATION in a local configuration file
called local.mk in the library directory of HALadapt. Lines that are preceded by a
hashtag (#) are ignored by the make, the tool that is used to pass the flags from the con-
figuration file to the compiler. This allows the user to merely add or remove a hashtag
when changing co-scheduling determination strategy. On rebuild of the library, the de-
sired flags are passed to the C preprocessor which copies the corresponding features into
the source code before it is compiled by the C compiler. The flags are not mutually exclu-
sive and multiple can be set at a time. However, as shown in code listing 5.2, all inserted
code snippets contain a return statement which will cause the routine exit, rendering
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the rest of it to be effectively dead code.

201 # a lways do a co−s c h e d u l i n g i f new t a s k i s s u b m i t t e d by any p r o c e s s
202 #OPT DEFS += −DDLS CO SCHEDULING STRATEGY ALWAYS
203
204 # o n l y do a co−s c h e d u l i n g i f hardware c o n t e n t i o n i s d e t e c t e d
205 OPT DEFS += −DDLS CO SCHEDULING STRATEGY HARDWARE CONTENTION
206
207 #co−s c h e d u l e t a s k s i f t h e speedup i s g r e a t e r than i t s c a l c u l a t i o n c o s t s
208 OPT DEFS += −DDLS CO SCHEDULING STRATEGY SPEEDUP
209
210 #co−s c h e d u l e t a s k s i f t h e have t o w a i t l o n g e r than i t s c a l c u l a t i o n t a k e s
211 #OPT DEFS += −DDLS CO SCHEDULING STRATEGY AMORTIZATION

Listing 5.1: Configuration of the Co-Scheduling Determination in the File local.mk

5.1.2 Always

If the flag -DDLS CO SCHEDULING STRATEGY ALWAYS is passed to the compiler
when building the library, the query for a co-scheduling need returns “1”, in all cases.
This will lead to a co-scheduling calculation and initiation regardless of any factors that
could a co-scheduling render useless. Choosing this option even excludes sanity check
that would prevent a co-scheduling calculation in case there are no other processes on
the node that have submitted tasks into the runtime system that could be co-scheduled.
Consequently, choosing this option can result in passing the co-scheduler tasks of only
one process which makes it face a situation for which its assumptions are not congruent.

5.1.3 Hardware Contention

This strategy is inserted into the code, when the flag -DLS CO SCHEDULING STRATEGY
HARDWARE CONTENTION is passed to the compiler’s preprocessor when building the

library. This makes a process check the shared memory waiting queues of the execution
devices that are desired for execution. If any of these queues hold an entry of another pro-
cess, hardware contention is assumed. The checking process then initiates co-scheduling
calculation.

5.1.4 Speedup

Passing the flag -DDLS CO SCHEDULING STRATEGY SPEEDUP to the C preprocessor
makes it copy the routine for a optimistic speedup calculation into the check whether a co-
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scheduling is necessary. Gaining information about the actual speedup of a co-scheduling
requires to calculate the very same thing, which is precisely the procedure desired to be
omitted. The optimistic calculation for the speedup therefore replaces a calculation of a
co-scheduling. It queries what hardware can be used immediately first, and then compares
it with the execution time on the desired hardware devices. If the difference between the
desired execution time and the runtime on the free devices is greater than the cost for a
co-scheduling, the process of calculating the latter is instantiated.

5.1.5 Waiting Time Amortization

The fourth strategy can be inserted into the code by passing the flag -DDLS CO SCHEDU
LING STRATEGY AMORTIZATION to the preprocessor when compiling the library.
The then inserted feature goes through the waiting queues of all hardware devices that
are desired for execution and memorizes the longest waiting time. If the thereby found
waiting time is greater than the time it takes to calculate a co-scheduling, the latter is ini-
tiated.

1 char d l s h w t o p c o s c h e d u l i n g n e c e s s a r y ( s t r u c t d l s l l t a s k s ∗ t a s k s ) {
2
3 / / n a i v e approach
4 # i f d e f DLS CO SCHEDULING STRATEGY ALWAYS
5 re turn 1 ;
6 # e l s e
7 / / i f t h e r e i s n o t a t l e a s t one t a s k o f a n o t h e r p r o c e s s w a i t i n g , t h e r e i s

no need f o r a co−s c h e d u l i n g
8 i f ( ! d l s h w t o p o t h e r p r o c e s s h a s w a i t i n g t a s k s ( ) )
9 re turn 0 ;

10 # e n d i f
11
12 / / co−s c h e d u l e o n l y i f hardware c o n t e n t i o n i s p r e s e n t
13 # i f d e f DLS CO SCHEDULING STRATEGY HARDWARE CONTENTION
14 re turn d l s h w t o p h a r d w a r e c o n t e n t i o n ( t a s k s ) ;
15 # e n d i f
16
17 / / co−s c h e d u l e e n a b l e s speedup l a r g e r than t h e c o s t t h e r e o f
18 # i f d e f DLS CO SCHEDULING STRATEGY SPEEDUP
19 re turn ( d l s h w t o p p r e d i c t c o s c h e d u l i n g s p e e d u p ( t a s k s ) >

d l s h w t o p g e t c o s c h e d u l i n g c o s t ( ) ) ;
20 # e n d i f
21
22 / / co−s c h e d u l e i f t h e c o s t t h e r e o f can be a m o r t i z e d by t a s k ’ s w a i t i n g t i m e
23 # i f d e f DLS CO SCHEDULING STRATEGY AMORTIZATION
24 re turn ( d l s h w t o p g e t w a i t i n g t i m e ( t a s k s ) >

d l s h w t o p g e t c o s c h e d u l i n g c o s t ( ) ) ;
25 # e l s e
26 re turn 0 ;
27 # e n d i f
28 }

Listing 5.2: Configurable Co-Scheduling Determination
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5.2 Inter-Process Communication

This section describes the actual implementation of the necessary inter-process commu-
nication. Before the shared memory approach was pursued, a more explicit and also ex-
perimental way for processes to exchange information was implemented out, ie. reading
another processes’ memory region. This turned out meager successfully compared to the
implicit communication implementation using data in the shared memory. The following
subsections describe issues with the implementation that reads other processes’ memory.
An overview of possible procedures using the shared memory for information exchange
as an implicit communication alternative is given.

5.2.1 Reading other processes’ memory

It is possible to read from and write to other processes’ memory regions in Linux op-
erating systems, since the contents of their memory are stored in a certain directory:
/proc/<process ID> /mem and can be opened as a regular file. This can be used
to look up data at any address of other processes’ logical address space. This subsection
points out what problems are faced when choosing to implement this approach for inter-
process communication.

Root Privileges

Accessing files in /proc/ requires root privileges on Linux operating systems. Thus,
successfully running a process that tries to access files in this directory requires it to be
started with these special rights, making the co-scheduling feature only possible if the
user possesses proper privileges. Since this thesis is designed to enable interaction of
multiple processes that can be started by any user on a HPC node, all users require these
special rights. This might not be in interest of the system administrators, which arises first
concern with this approach.

Knowledge of Others Processes’ IDs Required

Another problem emerges when it comes to the specific file path where the other process’
memory is located at. Since the other processes’ IDs need to be known, some inter-process
communication needs to precede this approach. A management file in the shared mem-
ory which contains the process IDs of all running HALadapt instances can remedy this
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circumstance. However, using the shared memory is exactly what is tried to be avoided
by this approach.

Knowledge of Others Processes’ Data Address Required

The third issue to address is the way how to actually access the other processes’ mem-
ory. Assuming a process is started with proper privileges and is aware of the process ID
whose memory region is to be read, then it is able to obtain a file pointer to the memory
of the other process by calling fopen("/proc/<process ID>/mem, <access
mode>). Now, within the received file pointer, memory address can be read (using
fread()) or written (using fwrite()), depending on the access mode set when open-
ing the file. Since the desired information are not stored at the beginning of the other
processes’ memory, it is additionally necessary to know the offset of the desired infor-
mation. This offset needs to be communicated between processes before making this
approach possible. This information can for example also be stored in the shared memory
management file mentioned above.

Complexity of Data Structures and Management Overhead

Assuming that the address offset of the desired data in the other process’ local memory
region is known, one can navigate the file pointer to this address, using fseek(). This
moves the file pointer to the specified address, allowing to read from or write to data of
the other process’ memory at a desired address. In order to acquire information for the
co-scheduling, data structures like sturct dls task need to be read. This data struc-
ture, for example, consists of 26 data fields, 13 of these are pointers to other structures of
which 4 are of variable length. All these pointers point to addresses that possibly need be
looked up manually using fseek() before being able to access their data, that might be
data structures again that have pointers again... and so on. This causes a massive manage-
ment overhead made up by manually navigating through the other process’ memory and
storing addresses whose content needs to be looked up again. The C language does not
have a feature that supports a recursive deep copy of a data structure, that can avoid this
cumbersome and error prone writing of code.
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Portability

The last concern with this approach is the portability to other operating systems be-
sides Linux. At least Microsoft Windows does not expose the processes’ memory in
/proc/<process ID>/mem. This excludes the co-scheduling feature from other op-
erating systems like Microsoft Windows which results in an unwanted degradation of this
thesis.

Conclusion

Comprising the above mentioned facts, manually looking up other processes’ memory can
not avoid falling back to the shared memory approach, causes an unwieldy management
overhead for looking up all the pointers, lists and memory structures, degrades portabil-
ity and requires root privileges for users. Consequently, this approach has been declared
neither suitable nor feasible within the scope of this thesis.

5.2.2 Shared Memory

In contrast to the above presented approach, using the shared memory neither requires
users to have root privileges, nor the knowledge of others processes’ IDs, nor the knowl-
edge of the address of data of interest in the respective local memory region, nor causes
portability issues since there are equivalent functionalities for non-POSIX operating sys-
tems1. Hence, making use of the shared memory in order to enable inter-process commu-
nication is pursued in this thesis.
The shared memory implementation provides another advantage besides the aforemen-
tioned ones: it allows incorporation of any external scheduler since all required informa-
tion is made accessible for all processes in the system. Therefore great extensibility is
given. However, this also arises security considerations, as merely deleting the files in the
shared memory can cause undefined behavior.
This subsection gives an overview on how shared memory objects are created and man-
aged. Also two different approaches are presented that enable data exchange for co-
scheduling tasks of multiple processes.

1This feature is also implemented for Microsoft Windows, which is not POSIX compliant.
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Usage of POSIX Shared Memory Functions

POSIX compliant shared memory objects are located in /dev/shm. Ther are created,
or, if already existent, opened by using the POSIX function shm open() which returns
a file descriptor for the shared memory object. Its physical address is then mapped into
the processes’ logical local address space by calling the POSIX function mmap(), which
returns a pointer to the mapped memory region. This pointer is of type void*, ie. the
data structure independent type of pointers in C. It can be handled as (“casted to”) any
type of data. This means that the programmer is not confined in what he intends on doing
with the memory pointed to. He is presented a zero-initialized piece of memory to which
he can freely store information in any desired data structure.
Passing the flags S IROTH and S IWOTHT to the function shm open(), sets read and
write permissions for other processes on creation of the shared memory object. Setting
the flags S IRUSR and S IWUSR is also required, since they allow the creating process
itself to read from and write to the shared memory object. The combination of these four
flags enables read and write permissions for multiple processes to shared memory objects,
which implies inter-process communication.

Asynchronous Data Access Handling

Since the shared memory allows multiple processes to have the same physical memory
accessible, asynchronous read- or write operations on the same address may occur. This
leads in certain situations to data corruption which is desired to be avoided. A very sim-
ilar issue arises if multiple threads, that, by default, share the same data region, access
the same address asynchronously. Therefore the POSIX Threads (pthread) execution
model provides functions to manage locking mechanisms, so called “Mutexes”. These
mutexes can also be applied to this process-wide competition for data.

Store All Data in the Shared Memory

HALadapt instances store data structures for submitted tasks in their local memory region.
This data structure contains, among data fields, pointers that point to other data structures.
Besides one exception, ie. the shared memory waiting queues, all of the data structures
pointed to, are also located in the local memory address space. Therefore, allocating a
shared memory object for the task data structure alone does not enable other processes
to fully access information that would be required to supply their HALadapt built-in task
scheduler with all information it needs to find a co-scheduling. Allocating shared memory
objects for all the data structures that the task data structure points to leads to the same
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problem as pointed out in 5.2.1: need for a recursive deep data copy. Consequently, this
approach to supply the built-in task scheduler with information of other processes’ tasks
is not feasible.

Store Selected Meta-Data in the Shared Memory

With regard to the aforementioned circumstances, this thesis pursues sharing only se-
lected information in the shared memory, ie. exactly that information which is required to
co-schedule tasks of multiple processes. Therefore, this thesis enhances the shared mem-
ory usage by data structures that are presented in more detail in the following section (5.3).

5.3 Data Structures

According to the above presented reasons, new data structures are introduced that contain
the certain payload information that is required for finding a co-scheduling. An addi-
tional data structure is invented for management purposes. This section contains details
concerning these data structures and explains how they are related to each other and what
information they contain. These data structures are located in the shared memory and
therefore accessible by any process in the system.

5.3.1 Data Structure “Co-Scheduling Information Management
File”

This thesis introduces a management data structure in the shared memory. It is designed
to manage the information that is required in order to find a process-wide co-scheduling.
It consists of a fixed-length header which contains general information concerning a pos-
sibly running or finished co-scheduling calculation. Table 5.1 shows the structure of the
CSIMF header.
The so called payload is a variable length list of CSIMF entries which correspond to an
CSI files in the shared memory. These files ,along with their use and content, are pre-
sented in subsection 5.3.2. Table 5.2 depicts the data structure of the payload, ie. the so
called CSIMF entries in the shared memory.
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CSIMF Header

The first two data field are dedicated to pthread locking mechanism functions. The
“Access Mutex” field is of type pthread mutex t and 40 Bytes long. It is the actual
mutex that can be acquired by processes. Any other process that intends to access data in
the CSIMF needs to acquire this mutex and release it afterwards. This procedure ensures
that all asynchronous access to the memory are serialized and no corruption occurs. The
second field is 4 Bytes long and of type pthread mutexattr t. It can be used to
specify further properties of the mutex. Details on this will not be regarded, since they do
not matter for the presented implementation.

The third field in CSIMF is the so called “status” field. The status field is used to notify
other processes of the current state of a possibly calculated co-scheduling. The status field
is set to DLS CO SCHEDULING STATUS NOT STARTED, if there is no co-scheduling
calculated, or if all processes are done fetching the new schedule for their tasks from the
shared memory. The status field is set to DLS CO SCHEDULING STATUS RUNNING,
if a process initiated a co-scheduling and its calculation is still ongoing. Processes that
read this state, wait until the calculation of the co-scheduling is completed, which is sig-
naled by DLS CO SCHEDULING STATUS DONE. This is set, if the process that initiated
a co-scheduling is done with the calculation thereof. Processes then fetch the result of the
co-scheduling from the shared memory and start execution of the new schedule.

The next field contains the ID of the process that initiated calculating a co-scheduling.
Storing this ID is necessary to find a task that is involved in the co-scheduling that is cho-
sen to undertake special action: the “master process” checks if the other processes have
fetched the result from the calculated co-scheduling and resets the status field accordingly.
This also implies that the other processes have been successfully notified of the new co-
scheduling and returned from the execution of their current tasks. The implementation of
a detection for that is described in section 5.3.1.

Next in the CSIMF data structure, a variable length list of so called “CSIMF entries” fol-
lows. This is also referred to as the “CSIMF Payload”.

CSIMF Payload

The CSIMF Payload consists of a variable amount of “CSIMF entries”. There is one
CSIMF entry for each CSI file that exists in the shared memory currently. This is equal
to the sum of processes’ tasks that are not in execution currently and therefore subject to
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Access Mutex
Mutex Attribute

Status
Master Process’ ID

Amount of CSIMF Entries
CSIMF Entry 1

...
CSIMF Entry n

Table 5.1: Header of the CSIMF Data Structure in the Shared Memory.

a co-scheduling.
The CSIMF entry has its identifier in the beginning of its data structure. This identifier
consists of the process ID that created the task, a dash (“-”)) and the task ID within the
process. This identifier corresponds to the file name of the respective CSI entry in the
shared memory and is used for other processes to look up the CSI file in /dev/shm.
The name field is followed by access mutexes that have similar function as in the CSIMF
header. However, in this case, access control does not affect the CSIMF file again, it reg-
ulates access to the CSI files. Reason for that is that the CSI file has a header of variable
length, that needs to be parsed manually. Reducing data fields within this header means a
reduction in error prone manual pointer arithmetic.
The next field in the CSIMF entry is the ID of the process that created this CSIMF en-
try. This is used to detect whether there are tasks of other processes in the system that can
cause need for a co-scheduling. If no presence of other tasks is detected, no co-scheduling
is necessary and therefore omitted.
The next field is the file descriptor that has been returned to the process that opened the
CSI file. It is used to close the CSI file when the task has been executed. This file descrip-
tor could also be stored in the global local memory of the process. However, based on the
idea of separation of concerns [42], global variables are tried to be avoided.
The next two fields are flags, that indicate the status of the task which the CSI file cor-
responds to. The scheduled flag is set, if the co-scheduler has scheduled the task to an
execution device. The ready flag is set if all dependencies have already been scheduled.
Both flags are used by the co-scheduler internally. The exact role they play is described
in section 5.4.
The next field in the CSIMF entry stores the priority of a task. The priority can be used
by the scheduler in order to come to scheduling decisions, eg. which task allocates what
accelerator.
The next field contains the round in which the task has been scheduled by the scheduler. It
is set by the scheduling process and read by the owning process when fetching the result.
It ensures that the processes enqueue their tasks in the correct order to avoid dependency
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CSIMF Entry Name
Access Mutex

Mutex Attribute
CSI Owning Process ID

File Descriptor
Scheduled Flag

Ready Flag
Priority
Round

CPU Capability Flag
OMP Capability Flag
GPU Capability Flag

CUDA Capability Flag
OCL Capability Flag

Table 5.2: Data Fields of the CSIMF Entry, also called “CSIMF Payload

violations.
The last fields are flags that indicate to what execution devices a task can be mapped.
These flags are used by the co-scheduler to detect tasks that can only run on a specific
execution devices and handles them accordingly. For details on their treatment, refer to
section 5.4.

5.3.2 Data Structure “Co-Scheduling Information”

Along with the management data structure CSIMF, the actual co-scheduler-relevant data
is stored in the shared memory. A data structure called Co-Scheduling Information (CSI)
is introduced in this thesis in order to make required information accessible for all pro-
cesses in the system. The presence of a CSI file implies that a running HALadapt instance
has tasks enqueued in the shared memory waiting queues that are not running yet. They
are subject to a co-scheduling and are deleted on execution of the respective task. Like
the CSIMF, the CSI files consist of a header and a payload. Both of these have variable
length. The header contains information on the task’s dependencies and a few other man-
agement data fields. The data structure is depicted in table 5.3. The payload contains
information on all execution alternatives that this task provides. Its structure is shown in
table 5.4.
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Number of Dependencies
IDs of Dependencies

Number of Reverse Dependencies
IDs of Reverse Dependencies

“Best” Index
Number of Available Execution Alternatives

Table 5.3: Data Structure the Co-Scheduling Information header

CSI Header

The header of a CSI file starts with the number of dependencies of the respective task.
Storing this amount is necessary for correctly parsing the file, since the pointer is moved
through it manually. Human readable names of the tasks that this respective task de-
pends on are stored afterwards. They are used by the co-scheduler in order to determine
whether a task is ready to be scheduled by looking up all its dependencies and checking
their scheduled flag.
Afterwards, the number of reverse dependencies2 and the names of those are stored. This
is necessary because some tasks do have indirect dependencies to other tasks. They need
to be resolved, which is done by making use of reverse dependencies. Indirect depen-
dencies may occur if, for example, a memory transfer resides between the execution of
two tasks. Then, one of the tasks reversely depends on the memory transfer, whereas the
other task depends on it “normally”. They both then store the ID of the memory transfer,
which is detected and then replaced by the task ID of the computation task, ie. the direct
dependency.
The next data field in the CSI header is called “Best Index”. It is used by the co-scheduler
to memorize what entry in the payload is the currently best mapping according to the cur-
rent co-scheduling state. On termination of the co-scheduling calculation, the respective
process looks up this data field in order to fetch the result of the co-scheduling calculation.
The last field stores the amount of how many CSI payload entries follow next. This is,
once again, necessary for correctly parsing the CSI file.

CSI Payload

The payload of a CSI file can be seen as a table of execution alternatives that this task pro-
vides. The entries consist of the respective programming model, eg. OMP, CUDA, etc...,
the respective runtime with that programming model and the amount of threads used. The

2A task T0 is referred to as a reverse dependency of a task T1, if T0 depends on T1.

40



5.4 The Co-Scheduler

Programming Model of Implementation 1
Runtime of Implementation 1

Amount of used Threads of Implementation 1
...

Programming Model of Implementation n
Runtime of Implementation n

Amount of used Threads of Implementation n

Table 5.4: Data Structure the Co-Scheduling Information payload

latter is only of interest when the task did not receive an accelerator and was scheduled to
the CPU cores.

The general structure of the CSIs is depicted in figure 5.1.

5.4 The Co-Scheduler

Along with the presented shared memory data structures arises the need for a mechanism
that can utilize their stored information in order to find a useful co-scheduling. For this,
multiple co-schedulers are presented in this thesis. This section focuses on the round
based greedy scheduling algorithm, for simplicity referred to as the “co-scheduler”. It
fetches its information from the shared memory which allows it to co-schedule tasks of
multiple processes. It is accelerator aware and therefore suited for heterogeneous comput-
ing system. The primary goal of this scheduler is to make use of all hardware resources
that remain idle on a HPC nodes (see 1.1), thus it can be called throughput-driven. It
pursues a round based approach for assign tasks to execution devices and tries to allocate
100% of the computing resources that are available in the system. On top of that, it pro-
vides configurability for the calculation of task’s priority, that is used to decide which task
allocates specific accelerators.

5.4.1 Scheduling Flow

This subsection describes the co-scheduling flow of the presented task co-scheduler. Be-
fore the actual co-scheduling begins, a preparation routine is called which acquires more
needed information and undertakes modifications on the data in the CSI payload of some
tasks. After that, the actual round based scheduling mechanism is repeated until all tasks
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Processing Units Execution time
CPU 0 (CPU 0)

CPU 0, CPU 1 (CPU 0, CPU 1)

CPU 0, ..., CPU n (CPU 0, ..., CPU n)

... ...

Accelerator 0 (Accelerator 0)
Accelerator 0, Accelerator 1 (Accelerator 0, Accelerator 1)

Accelerator 0, ..., Accelerator n (Accelerator 0, ..., Accelerator n)

... ...

CSI for P T

Processing Units Execution time
CPU 0

CPU 0, CPU 1

CPU 0, ..., CPU n

... ...

Accelerator 0
Accelerator 0, Accelerator 1

Accelerator 0, ..., Accelerator n

... ...

CSI for P T0 0 0 m

...P T0 0
T

P T0 0
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P T0 0
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P T0 0
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P T0 0
T

P T0 0
T
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(CPU 0, ..., CPU n)
(Accelerator 0)

(Accelerator 0, Accelerator 1)

(Accelerator 0, ..., Accelerator n)
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P T0 m
T
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T

P T0 m
T

P T0 m
T

P T0 m
T

Processing Units Execution time
CPU 0 (CPU 0)

CPU 0, CPU 1 (CPU 0, CPU 1)

CPU 0, ..., CPU n (CPU 0, ..., CPU n)

... ...

Accelerator 0 (Accelerator 0)
Accelerator 0, Accelerator 1 (Accelerator 0, Accelerator 1)

Accelerator 0, ..., Accelerator n (Accelerator 0, ..., Accelerator n)

... ...

CSI for P T

Processing Units Execution time
CPU 0

CPU 0, CPU 1

CPU 0, ..., CPU n

... ...

Accelerator 0
Accelerator 0, Accelerator 1

Accelerator 0, ..., Accelerator n

... ...

CSI for P Tj 0 j k

...P Tj 0
T

P Tj 0
T

P Tj 0
T

P Tj 0
T

P Tj 0
T

P Tj 0
T

(CPU 0)
(CPU 0, CPU 1)

(CPU 0, ..., CPU n)
(Accelerator 0)

(Accelerator 0, Accelerator 1)

(Accelerator 0, ..., Accelerator n)

P Tj k
T

P Tj k
T

P Tj k
T

P Tj k
T

P Tj k
T

P Tj k
T

...
Number of entries
Index of best entry

IDs of reverse dependencies
Number of reverse dependencies

IDs of dependencies
Number of dependencies

Number of entries
Index of best entry

IDs of reverse dependencies
Number of reverse dependencies

IDs of dependencies
Number of dependencies

Number of entries
Index of best entry

IDs of reverse dependencies
Number of reverse dependencies

IDs of dependencies
Number of dependencies

Number of entries
Index of best entry

IDs of reverse dependencies
Number of reverse dependencies

IDs of dependencies
Number of dependencies

Figure 5.1: CSI files are generated for every task submitted to HALadapt that is queued
and not running.
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have been assigned to execution devices. The overall procedure is shown in figure 5.2.

Preparation Routine

For obvious reasons, the co-scheduler needs to be aware of the hardware installed in the
system. Thus, all available execution devices are counted and grouped by type, eg. CPU,
GPU, etc. This allows the scheduler to be aware of tasks that, according to their CSI
entries, need to allocate an accelerator or otherwise would be blocked.
Another part of the preparation routine is to resolve indirect dependencies as explained in
5.3.2. In case some tasks have an indirect dependency to another task, the name of the di-
rect dependency is resolved and its name overwrites the name of the indirect dependency.
This eases the future handling of dependencies and assures that no non-existing files are
tried to be opened in the shared memory.

Round Based Allocation Mechanism

The co-scheduler starts a round based allocation mechanism after the aforementioned
preparation routine has been executed. This round based allocation mechanism is applied
to all tasks until none is left unscheduled. Each round begins with determining the tasks
that are ready for execution. This is done by checking if all their dependencies have been
scheduled already. A task can also be detected as ready, if it has no dependencies stored in
its CSI header. This task is then assumed to be the first task that a process has submitted
and thus is ready to be scheduled. The number of tasks detected to be ready is summed
up and used throughout the scheduling round.
As the next step, a feature called “Stickiness” is applied, if exactly one task is ready to be
scheduled and other criteria are met. Details on this feature are presented in section 5.4.3.
If multiple tasks are ready to be scheduled, or the stickiness criteria of a ready task did
not apply, the possible execution devices of the tasks are determined by reading their CSI
payload and thereby setting the implementation flags in their CSIMF entries. This enables
the co-scheduler to be aware of tasks that solely offer one implementation and therefore
need to allocate this particular accelerator. Their execution would be blocked otherwise.
A computing device that must be allocated by a task is referred to as an “urgently needed”
device. The amount of urgently needed devices is summed up and grouped by type. If
this sum for a group of execution device is larger than the amount of respective devices in
the system, hardware contention has occurred. In this case at least one task needs to wait.
A “winner” needs to be found among all tasks that urgently need this device. This is done
by calculating the priority of all competing tasks. The task providing the highest priority
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may allocate its urgently needed device. This procedure is repeated until all available ac-
celerators have been allocated. In case the computing system provides enough execution
hardware for all demanding tasks, they simply allocate their urgently needed devices.
Any remaining free accelerators in the system are distributed to tasks that can make use
of them, ie. offer an implementation for that programming model. If there are more than
1 tasks that could use this accelerator, their priority is consulted to pronounce a “winner”
once again. This procedure is repeated until no accelerators that could be used are left
unallocated in the system.
All tasks that remain unscheduled at this point, are distributed among CPU threads.

5.4.2 Configurable Priority

Greedy scheduling algorithms that utilize a heuristic for finding a solution have the dis-
advantage that they can not overcome local extrema. That means, solutions found by
such schedulers are possibly not the global optimum, but a local one. Since the presented
scheduler is also afflicted by this circumstance, users have the option to configure the
priority calculation that is used when accelerators are being distributed among the tasks.
This makes the scheduler come to different scheduling solutions that can be more suited
for a given problem. Finding a “fair” schedule with heuristic based scheduling algorithms
has set up a wide field for research. To name some example fields: parallel computing
[43], the Linux kernel [44] [45], multimedia systems which also have real time require-
ments [46] and many more.

The co-scheduler presented in this thesis supports three different priority definitions:

• Number of Successors: The priority is equal to the number of successors of a task.
This makes the co-scheduler behave comparable to a list-scheduling algorithm [47]
[48].

• Runtime: The task with the lowest runtime among all its competing tasks is al-
lowed to allocate an accelerator.

• Age: Tasks are accompanied with information about their age. The oldest task that
is competing for an accelerator is allowed to allocate the desired device. This can
prevent starvation, an issue that scheduling algorithms often have to cope with [49].

The configuration is done in the same way as configuring the determination of a co-
scheduling initiation, ie. by passing the respective flag to the preprocessor when building
the library. The flags are stored in local.mk in the library folder and can be set by
adding, or unset by removing, a hashtag (“#”) at the beginning of the respective line.
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Figure 5.2: Flow diagram of the round based co-scheduler
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214 ### p r i o r i t y i s t h e number o f s u c c e s s o r s ( l i s t s c h e d u l i n g−l i k e b e h a v i o r )
215 #OPT DEFS += −DDLS CO SCHEDULING PRIORITY N SUCCESSORS
216
217 ### p r i o r i t y d e t e r m i n e d by t h e f a s t e s t r u n t i m e
218 #OPT DEFS += −DDLS CO SCHEDULING PRIORITY RUNTIME
219
220 ### use age as p r i o r i t y
221 OPT DEFS += −DDLS CO SCHEDULING PRIORITY AGE

Listing 5.3: Configuration of the Priority Defenition in File local.mk

5.4.3 Stickiness

Another feature that is introduced along with the co-scheduler of this thesis is called
“Stickiness”. The name originates from its functionality, ie. tasks can stick to an exe-
cution device in order to avoid data transfers. Need for this feature was observed while
developing the co-scheduler, which mapped single tasks that have been scheduled on the
CPU to an accelerator as soon as it became idle. This was often the case for just a single
task and caused a memory transfer. Since this behavior is not desired, this feature was
developed.

5.5 Random Based Scheduling Algorithms

Besides the round based greedy algorithm, two other scheduling algorithms are intro-
duced. Both of them find their solutions based on random decisions, which is common
procedure for generating a starting solution when facing NP-hard problems [41] [50].
In this implementation, the scheduler’s solution is not used as a starting point for any
succeeding scheduling mechanism. The random based schedulers do only serve for com-
parison with the round based greedy scheduler and show that the introduced mechanism
of information exchange using the shared memory can be used independently from the
actual scheduler. They are not likely to run into local extrema, unlike the round based
scheduler. The random based schedulers are implemented as an replacement for the evo-
lutionary scheduling mechanisms, which is missing due to time shortage.

5.5.1 Simple Random Mapping Algorithm

The first one is a simple plain random scheduler which merely set the best index of a CSI
file to one of its payload entries. Inefficient schedules, idle devices and cache contention
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is likely to occur. Since this procedure is not especially promising, an enhanced version
of this procedure is presented as well. This scheduling mechanism is referred to as the
“enhanced random co-scheduler”.

5.5.2 Enhanced Random Co-Scheduler

The third scheduling mechanism that is presented in this thesis is called “Enhanced Ran-
dom Co-Scheduler”. It bases, like the mechanism that it is derived from, on random
decisions. In contrast, it is equipped with more awareness of on the one hand for avail-
able hardware in the system, and on the other hand for the depth of the submitted task
graph, ie. the maximum number of successors among all tasks. These pieces of informa-
tion are taken into account when finding a schedule.

Iterative Procedure

The main idea with this scheduling mechanism is try out multiple random mappings and
check if they are “possible” or not. A “possible” mapping is present, if the amount of
randomly allocated devices is no larger than the amount of “allowed” devices in the sys-
tem. The number of “allowed” devices is derived from the depth of the submitted task
graph:

allowed devices = available devices · max
t∈tasks

 ∑
s∈succ(t)

1


Since this scheduling mechanism is not round based and not aware of any completion time
of the tasks, using the maximal amount of successors of all tasks that are to be scheduled
is another way to adduce some temporal aspect for the scheduling process.
The enhanced random co-scheduler generates a random task mapping and validates if this
mapping is allowed or not. This procedure is repeated multiple times whilst storing the
fastest mapping found. The amount of iterations can be configured similar to the other
configurable features presented in this thesis.

5.6 Integration in HALadapt

In order to elaborate effectiveness of the presented features, a runtime system that re-
duces management overhead in developing applications for heterogeneous HPC systems
is consulted. This omits cumbersome and error prone tasks like installing and configuring
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drivers for execution devices, manual managing thereof, scheduling task executions, writ-
ing code that manually manages accelerator usage including memory management and
other time consuming issues. In short, programmers can include the HALadapt library in
their source code in order to call kernels without taking care for the underlying hardware
and mandatory memory transfers that are necessary for a correct execution, significantly
reducing programming overhead for heterogeneous computing programs. Therefore, the
runtime system HALadapt, which has been developed at KIT by Kicherer et al [25] is
consulted. All presented features are integrated into HALadapt and then used to evaluate
effectiveness of these features.
This section provides information on the overall procedure of HALadapt, how the fea-
tures can be en- and disabled as well as a listing of what amendments are necessary to
implement correct behavior of the new features.

5.6.1 Activation of Co-Scheduling Features

All presented features are encapsulated by C preprocessor “pragmas” in the source code.
This allows the user to configure whether they are desired or not at compile time. The
competent flag that needs to be passed to the preprocessor is DLS CS and can be set in the
configuration file local.mk. This eases to en- or disable the features on demand and is
also useful for comparing execution times and measuring caused overhead.

5.6.2 Additionally Required Mechanisms

This subsection describes additional mechanisms that had to be introduced in order to
implement a process-wide task co-scheduling.

Inserted Pre-Execution Check

A running HALadapt instance can check if a co-scheduling by another instance is present
by reading the status data field of the CSIMF in the shared memory. This check is done
once before execution of any task. Since preemption is not designated in this thesis,
the flag is not polled while task execution, which could enable an earlier reaction to a
present co-scheduling and therefore reduce inefficient hardware usage. However, if a co-
scheduling is found while performing this check, the execution of succeeding tasks is
skipped. These tasks are remembered as not executed by setting a flag called rerun so
that further mechanisms are aware of tasks that need to be placed into a new, rebuilt task
graph. A global flag called dls tgraph rebuild necessary is set as well. This
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causes further mechanisms to be engaged after exiting prematurely from this inchoate
task graph execution. They are presented in the following.

Looping Mechanism for Task Graph Rebuild

Once a HALadapt instance returns from its task graph execution, the status of the global
flag dls tgraph rebuild necessary is checked. If it is not set, usual task graph
completion is assumed and the HALadapt instance proceeds to exits as usual. However,
the procedure is much different if the flag is set at this point, because the need for a task
graph rebuild is indicated. A task rebuild routine is executed and a new task execution
call is made, closing the looping mechanism. This procedure can be repeated for every
arising co-scheduling while task graph execution until it is completely executed.

Code listing 5.4 depicts the implementation of the looping mechanism. The lines pre-
ceded by a hashtag (“#”) are preprocessor pragmas which encapsulate the co-scheduling
features. First, the HALadapt instance checks if it should initiate a a co-scheduling. The
actual loop, implemented as a “do-while” construct, is entered afterwards. Every loop
starts by setting 2 flags that manage correct behavior when prematurely returning from
task graph execution. Then, the currently existing task graph is executed. This execu-
tion might be interrupted by any process’ co-scheduling, even by its own co-scheduling
that has been calculated in line 138. As mentioned, returning from task graph execution
prematurely causes the flag dls tgraph rebuild necessary to be set, which first
causes the task graph to be rebuild according to the co-scheduling result in the shared
memory, and afterwards causes the loop be run anew in order to execute the new task
graph. This procedure is repeated until all tasks in the task graph are executed.

136 # i f d e f DLS CS
137 i f ( d l s c s c o s c h e d u l i n g n e c e s s a r y ( t g r a p h −> c o n t a i n e r −> t a s k s ) )
138 d l s c s c o s c h e d u l i n g ( ) ;
139 do {
140 d l s t g r a p h r e b u i l d n e c e s s a r y = 0 ;
141 d l s t g r a p h t r a v e r s e d = 0 ;
142 d l s t a s k e x e c u t e t g r a p h ( t g r a p h , 1 ) ;
143 i f ( d l s t g r a p h r e b u i l d n e c e s s a r y ) {
144 d l s c s r e b u i l d t g r a p h ( t g r a p h ) ;
145 }
146 } whi le ( d l s t g r a p h r e b u i l d n e c e s s a r y ) ;
147 # e l s e
148 d l s t a s k e x e c u t e t g r a p h ( t g r a p h , 1 ) ;
149 # e n d i f

Listing 5.4: Looping Mechanism to Enable Any Number of Occurring Co-Schedulings
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Task Graph Rebuild

The presence of an instance’s co-scheduling invalidates the task graph of all other HAL-
adapt instances. Therefore, an instance needs to be able to rebuild its task graph in case a
co-scheduling is detected. For this, a backup of the original task graph is created before
its first execution, from which executable copies can be derived. The tasks of the old task
graph indicate that they had been skipped, and therefore not executed, by having the flag
rerun set. All these tasks are inserted into a new task graph, which is then scheduled
by one of HALadapt’s internal task graph schedulers. They generate mapping candidates
among which the best is mapped candidate is chosen for execution and then to the respec-
tive hardware devices. Important to note, is that the candidate generation when rebuilding
the task graph differs from the one that is run when creating the initial task graph; there is
solely one candidate generated, which is fetched from the shared memory. This candidate
precisely represents the co-scheduling result. Generating exactly one candidate forces
every available scheduler of HALadapt to choose the same mapping, since there are no
alternatives generated. This procedure assures a scheduler-invariant way to force the co-
scheduling result to take effect in the scheduling of the individual processes’ tasks. The
thereby created task graph is then executed.

5.6.3 Integration of the Shared Memory Features

HALadapt already makes use of the shared memory and therefore provides functions for
managing such objects. These functions are extended to manage the files that are re-
quired for co-scheduling multiple processes. For this, on instantiation of a HALadapt
instance, the shared memory is checked for presence of already initialized data structures
by other HALadapt instances. A routine called dls hwtop open sm main() is run,
that opens or creates the needed files as a POSIX shared memory objects in /dev/shm.
This is done by calling the function shm open(). This function returns a file descrip-
tor for the opened shared memory object which is then passed to mmap() to map the
shared memory into the local memory space of the process. Another routine called
dls hwtop setup sm main() is called afterwards which initializes the data struc-
tures, if they have not been filled with information by another HALadapt instance yet.
Otherwise, the routine sets pointers to needed information accordingly, making content in
the shared memory objects accessible for later use.
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5.6.4 Information Needed by the Co-Scheduler

Information stored in the CSI files is extracted from HALadapt’s “history”, a database
which contains information about profiled past executions. Since the Co-Schedulers are
designed to read from the CSI files, they can only choose a mapping that has is stored in
the history. Therefore, tasks that are subject of a co-scheduling are required to be well
profiled by HALadapt. This causes considerable overhead, especially when it comes to
varying amount of OMP threads, including executions with a small amount of threads,
which are also of interest. They also need to be executed at least once and are likely to
have a very high execution time compared to execution times of the same task using an
accelerator.
The same need arises when memory transfers are to be taken into account. HALadapt also
profiles memory transfers and stores their caused overhead in the database. However, in
order to make the Co-Scheduler aware of the transfer time, they need to be profiled at
least once, increasing the complexity of a throughout profiling considerably.

5.6.5 Necessary Amendments

This subsection describes necessary amendments that had to be applied to already existing
features of HALadapt in order to make it support co-scheduling of multiple processes.

Disabled Loop Detection

HALadapt provides a feature called “Loop Detection”, which allows to detect whether the
same task is present in the task graph multiple times in a row. If this is the case, a mapping
is only calculated for the first task and all its succeeding tasks which are detected to be
part of the loop become a reference to the first task. This feature thereby applies changes
to the data structure of the submitted tasks, which hinders accessing all tasks individually,
which is required when changing their individual mapping in hindsight. In summary, the
loop detection confines all tasks within a detected loop to be executed on the exact same
mapping as the first task in the loop. Since a co-scheduling can occur while executing
the loop, changing the mapping of individual tasks within a loop needs to be possible.
Consequently, loop detection is disabled when the co-scheduling feature is desired.

Cleansing of the Waiting Queues

The entries in the shared memory queues serve for multiple purposes. On the one hand,
they supply the worker pool with information on what tasks are to be executed, and on the
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other hand, are used by other HALadapt instances to be informed about the current state
of execution devices. However, if a co-scheduling changes the task mapping, the usage of
execution devices changes as well, so not only the worker pool, but also other HALadapt
instances should be informed about the new schedule. Therefore, the out of date informa-
tion in the shared memory waiting queues needs to be replaced by information according
to the new schedule. However, HALadapt’s worker pool is not designed to abort an ex-
ecution. This lead to the decision to skip all task executions after the currently running
one, if a co-scheduling is detected. The shared memory waiting queues are cleared as a
side effect of this design decision.

Memory Retrieval

HALadapt keeps the data required for task execution on the accelerators, unless retrieval
is explicitly desired by the user. This has the advantage that data stored there can be re-
used, if further computations with this data are engaged on the accelerator. The data is
transferred automatically to another memory, in case the data is required by a succeeding
computation somewhere else. This behavior needs to be amended in order to entirely
support the co-scheduling feature, which relies on a completely traversed task graph hav-
ing all data in the host memory. Therefore, the task graph’s exit routine is extended by
calling memory transfers for all registered memory regions, that do not reside in the host
memory on task graph completion. This ensures that after the task graph is exited pre-
maturely, all data is fetched and ready to be re-distributed to accelerators according to the
co-schedule.
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This chapter presents the evaluation of the implemented features. It serves as an overall
assessment of the helping potential for tackling the problem described in 2.5. First, the
experimental setup, ie. the hardware on which the evaluation is done, is introduced. The
benchmarks used to evaluate the usefulness of the features are described. After that, be-
havior of the parameterizable enhancements, eg. the co-scheduling determination or the
multiple co-scheduling implementations, are evaluated with varyingly chosen parameters
in order to establish a differentiated estimation of their usefulness. Lastly, the caused
overhead in terms of runtime and memory are evaluated.

6.1 Experimental Setup

This section presents the experimental setup that is used for evaluation.
The HALadapt instances inheriting the presented features are instantiated on server “i82sn05”
at KIT’s chair for Computer Architecture and Parallel Processing (CAPP) which is part
of the Institute of Computer Science & Engineering (ITEC). The server runs an Ubuntu
Linux 18.04 Long Time Support (LTS) version and has CUDA version 10.0.130 and OCL
version 2.1 installed.
The server “i82sn05” offers two Intel R© Xeon R© E5 2650v4 CPUs with 12 cores each
running at 2.2 Gigahertz (GHz). The altogether 24 CPU cores offer 48 threads us-
ing Intel’s R© Hyper Threading (HT) technology. The heterogeneity is introduced by a
Nvidia R© Tesla R© K80, a dual GPU graphics accelerator providing 4,992 CUDA cores.
This card can be used by both the CUDA programming model and the OCL programming
model.

6.2 Benchmarks

This section introduces the benchmarks that are used in order to generate load in the
system. They offer different implementations and different properties in terms of hard-
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ware requirement. The Mandelbrot Benchmark is self-implemented, whereas the other
two benchmarks, the particle filter and the heat spreading calculation is taken from the
Rodinia Benchmark Suite [51].

6.2.1 Mandelbrot Set

A benchmark for data parallel processing is the computation of the Mandelbrot Set. It is
computed by iterating equation 6.1 on complex numbers until the absolute value of the
complex number is observed to be diverging or converging. These are the termination cri-
teria for the computation. Since all numbers of interest can be iterated on independently,
data parallel processors like graphics accelerators enable large speedups compared to an
execution using CPUs. For visualization, colors are then derived by mapping the amount
of necessary iterations until the iteration was terminated to a color palette, where the color
black indicates convergence.
The implementation for this thesis calculates for 72,000,000 complex numbers around the
origin of the complex plane, whether they converge or diverge. This procedure makes up
one task and can be repeated any number of times.

fc(z) = z2 + c (6.1)
where z ∈ C

Figure 6.1: The Mandelbrot Set 1

1By Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=321973
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6.2.2 Particle Filter

The source code for the Particle Filter (PF) benchmark is taken from the Rodinia Bench-
mark Suite and slightly rewritten in order to make use of the HALadapt library for its
execution. The PF is a statistical estimator of the location of a target object, that resides
within noisy measurement data. The PF has finds application in visual data analysis,
ranging from video surveillance in the form of tracking vehicles, cells and faces to video
compression.
The PF starts tracking a target object after it has been selected from the noise data envi-
ronment. For this, guesses about the target’s position in the current frame are derived from
previous frames’ information. A predefined likelihood model is consulted for asses the es-
timated likelihoods. Those assessments are then normalized and summed up to determine
the target object’s current location. After that, the guesses are updated, enabling more
convincing guesses in the future iterations [52]. This procedure can be, due to Rodinia’s
input data limitations, repeated up to 10 times. An iteration and consists of 4 tasks each
(likelihood, sum, normalizeWeights and findIndex), hence this benchmark
consists of a maximum of 40 tasks.

6.2.3 Prime Stress

Another benchmark used in this thesis is “Prime Stress”, a self implemented prime num-
ber finder. The benchmark consists of two parts. First, all prime numbers from 2 to
134,217,728 are determined in parallel using OMP. In the second part, a stress generating
calculation is applied to every prime number found. The results of these calculations are
then accumulated in a single variable, which is a procedure that can be hardly sped up
with parallelism. Consequently, this benchmark inherits a portion that does not scale well
with the amount of threads designated for its execution. This property is desired for later
evaluation.
One task of this benchmark consists of successively executing both aforementioned parts.
The execution can be repeated any number of times.

6.3 Improvements for Computing on
Heterogeneous Hardware

This section examines the affect of co-scheduling multiple processes’ tasks in heteroge-
neous computing, ie. involving an accelerator for task execution. Two different aspects
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are regarded in a suitable scenario, which is comparable to the one presented in section
2.5.1, in which heterogeneous computing hardware is inefficiently used. Two aspects are
examined, ie. the speedup enabled by co-scheduling tasks of multiple processes and sec-
ondly, the increased hardware usage that accompanies this procedure.

6.3.1 Scenario Description

This subsection regards the scenario in two processes P0 and P1 are started with a small
time offset. P0 consists of multiple tasks that can either be executed on the CPU or on
an accelerator, which is preferred since it provides higher throughput than an execution
on the CPU threads. The second process, P1, is started shortly after P0 has allocated the
accelerator. Unlike P0, P1 does not offer alternative execution devices. It needs to be
executed on the already allocated accelerator. Therefore, hardware contention is faced in
this scenario, which can be solved by co-scheduling multiple processes’ tasks.
The first process, P0 is an execution of the Mandelbrot benchmark (see 6.2.1), consisting
of 5 tasks. The second process, P1 is an execution of the PF benchmark (see 6.2.2) which
consists of 20 tasks (5 iterations). The time offset is 10 seconds. The script used to timely
start the two processes is given in listing 6.1.

6.3.2 Speedup

Figure 6.3.2 shows the execution times of script 6.1 with different features enabled in
HALadapt. The dark gray bars represent the execution time of the scripts without any
enhancements of this thesis. The green bars show the execution time of the round based
scheduler’s result. The red and blue bars depict the execution time of the decision of the
enhanced random mapping scheduler. There are two different configurations plotted, for
10 iterations and 42 iterations, respectively. Measurements are done for other amounts of
iterations (2, 5 and 7) but the execution times of their results are off chart, having execu-
tion times up to 10 minutes. Clearly, the more iterations the enhanced random mapping
algorithm is allowed to do, the better its results become.
Multiple runs with the same configuration are done in order to cope with runtime fluctu-
ations. The execution of the round based scheduler’s decision has an average execution
time of 76.0085 seconds, whereas the average execution time of the script without this
thesis’ features is 96.1865s. This implies a speedup of 96.1865s/76.0085s ≈ 126.547%.
Comparing the most extreme measurements gives an estimation of the largest speedup’s
magnitude, ie 97.634/71.673 ≈ 136.22%. Figure 6.3 and 6.4 depict the hardware alloca-
tion of the respective processes’ tasks.
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Figure 6.2: Speedup Enabled by Co-Scheduling Multiple Processes

1 # s t a r t t h e p r o c e s s e s
2 echo ” S t a r t i n g new HALadapt i n s t a n c e ( m a n d e l b r o t ) ” ; t ime . . / m a n d e l b r o t / man && echo ”

HALadapt i n s t a n c e t e r m i n a t e d ( m a n d e l b r o t ) ” &
3 s l e e p 1 0 ; echo ” S t a r t i n g new HALadapt i n s t a n c e ( p a r t i c l e f i l t e r ) ” ; t ime . . / p a r t i c l e /

p a r t i c l e f i l t e r −x 128 −y 128 −z 5 −np 1000000; echo ” HALadapt i n s t a n c e t e r m i n a t e d (
p a r t i c l e f i l t e r ) ”

Listing 6.1: Script for Evaluating the First Scenario

6.3.3 Increased Hardware Load

Besides the enabled speedup, overall hardware load is increased, too. Only the CUDA
device is in use without co-scheduling the tasks, leaving all 48 CPU cores in the system
idle. This is equal to 50% hardware load, if the CPU is seen as a monolithic computa-
tion device, or otherwise, equal to 2.04%. With the co-scheduling features enabled, the
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Figure 6.3: Allocation Mapping of Scenario 1 without Co-Scheduling
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Figure 6.4: Allocation Mapping of Scenario 1 with Co-Scheduling

GPU is in use for averagely 1m9.96s, and then idle until the CPU finishes processing its
tasks. This is, in average, 6.0432s later the case, implying an overall hardware load of
1 · (69.96s/76.0085s) + 0.5 · ((76.0085s− 69.96s)/76.0085s) ≈ 96.01%, or if the CPU
is not regarded as a monolithic device: 99.83%.

6.4 Improvements for Computing on Homogeneous
Hardware

Co-scheduling multiple processes’ tasks also can be applied in the absence of accelera-
tors in the system. This section examines the effect of co-scheduling tasks that can only
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run on the CPU. As shown in section 2.3, computational problems do not benefit from
arbitrarily large amounts of parallelism. Therefore, it can be useful to take task’s scaling
properties into account and distribute CPU cores accordingly. This procedure can also
prevent tasks from being blocked, in case no CPU cores are available and if there is no
way to re-arrange their distribution.

6.4.1 Scenario Description

The following case is set up for this section: a process P0 is started and submits its tasks
into the runtime system. These tasks can only make use of the CPU, which are all idle
when P0 is started. In order to provide highest throughput, up to all CPU cores are allo-
cated for executing P0’s tasks. However, the tasks do not scale very well with the high
amount of allocated threads. Another process, P1 is stared shortly after the execution of
P0’s tasks is engaged. P1’s tasks have the same characteristics as P0’s tasks and either
have to wait until P0’s tasks are finished or use idle CPU cores, if any.

The benchmark used for evaluating this scenario is “Prime Stress” (see 6.2.3) since it in-
herits a considerably portion of code that is not scaling with parallelism. The benchmark
is repeated four times, making up four tasks in total per process.
The round based greedy co-scheduler is used in this evaluation. The co-scheduling crite-
rion is set to “Hardware Contention”.

6.4.2 Increased Fairness

Listing 6.2 shows the script used for evaluating this scenario. Two processes are started,
both executing the Prime Stress benchmark, with a time offset of 33 seconds. Measuring
the execution time of the script does, in contrast to the heterogeneous evaluation case,
not show a speedup. In fact, the sum of the processes’ execution time is always greater
when initiating a co-schedule. However, another interesting aspect arises when regarding
the processes’ runtime: since the round based greedy scheduler distributes CPU threads
evenly to all tasks that did not allocate an accelerator, the difference (∆) of the two pro-
cesses’ execution time is lowered significantly. This implies an increase in fairness, ie. all
processes face the same slowdown due to allocated execution devices by other processes2.
Figure 6.6 and 6.7 depict the hardware allocation of the respective processes’ tasks.

2Note that the evaluation node was in use by others during conducting these measurements. Possible
measuring distortions are tried to be amortized by averaging results of multiple runs.
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Figure 6.5: Improved Fairness by Co-Scheduling Multiple Processes

1 # s t a r t t h e p r o c e s s e s
2 echo ” S t a r t i n g new HALadapt i n s t a n c e ( p r i m e s t r s s 0 ) ” ; t ime echo ” r ” | gdb . . / pr im / pr im &&

echo ” HALadapt i n s t a n c e t e r m i n a t e d ( p r i m e s t r e s s 0 ) ” &
3 s l e e p 3 3 ; echo ” S t a r t i n g new HALadapt i n s t a n c e ( p r i m e s t r e s s 1 ) ” ; t ime echo ” r ” | gdb . . /

pr im / pr im ; echo ” HALadapt i n s t a n c e t e r m i n a t e d ( p r i m e s t r e s s 1 ) ”

Listing 6.2: Script for Evaluating the Second Scenario

6.5 Runtime Overhead

This section sheds light upon the runtime overhead caused by executing the presented
features. First, the four co-scheduling determination strategies are evaluated, followed by
the different co-scheduling procedures.
HALadapt provides built-in profiling mechanisms that can be used to measure time passed
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Figure 6.8: Runtime Overhead of Co-Scheduling Determination Strategies

between lines of code, allowing for precise measurement of function execution. The mea-
surements are committed multiple times in order to cope with hardly predicable fluctua-
tion that occurs when measuring runtime. The thereby resulting measurements are then
averaged. Regression is then applied to the averaged values in the later sections, so that a
general growth can approximately be derived from the measured runtimes.

6.5.1 Runtime Overhead of the Co-Scheduling Determination
Strategies

This subsection examines the runtime overhead caused by the respective co-scheduling
strategies. Measurements are done for varying amount of tasks in the system in order to
establish awareness of the runtime overhead caused by the amount of tasks. This is useful,
since some of the co-scheduling determination strategies require information from these
tasks. Therefore, the runtime overhead can vary with the amount of tasks in the system.

6.5.2 Runtime Overhead of the Co-Schedulers

This subsection presents the runtime overhead that is caused by the introduced scheduling
mechanisms. The round based greedy scheduler is evaluated first. All of its configurable
priority definitions are evaluated individually. After that, the two random based sched-
ulers are evaluated.
The measurements are committed multiple times in order to cope with hardly predicable
fluctuation that occurs when measuring runtime. The measurements are averaged before
quadratic regression is applied, which provides information about the overall growth of
runtime overhead caused by a single task. Quadratic regression is chosen, since the sched-
uler’s priority calculation procedure inherits quadratic runtime complexity. This is due to
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Priority Definition Quadratic Regression Correlation Coefficient r
Age 398.4 · x2 + 61, 230 · x+ 232, 973 0.999767

Runtime 379.5 · x2 + 126, 480 · x+ 152, 069 0.999324
Number of Successors 398.2 · x2 + 71, 221 · x+ 174, 260 0.999737

Table 6.1: Quadratic Regression Results for the Priority Definitions’ Runtime Overhead

comparing on task with all other ones pairwise, which implies O(n2) comparisons.

Round Based Greedy Scheduler

At first, the runtime caused by the round based greedy scheduler and its three priority
definitions, ie. runtime, age and number of successors is measured in order to establish
awareness of their runtime overhead. These measurements are committed without the
stickiness feature enabled, since it would only take affect if the amount of tasks to co-
schedule is equal to 1.
Table 6.1 depicts the results of the quadratic regression for the averaged measurements of
the respective priority definition. Figure 6.9 plots the corresponding quadratic regression
curves and the measured runtimes which are used to calculated the averaged values for
the regression.

Random Based Schedulers

The two presented random based schedulers are evaluated in the following. The plain ran-
dom mapping scheduler does not offer any configurability, unlike the enhanced random
mapping scheduler and the round based greedy scheduler. The enhanced random based
mapping algorithm offers configurability in terms of the minimum amount of iterations
for finding a valid solution. This feature is evaluated with different minimum amount of
iterations. Since the actual amount of iterations is random, any regression is hardly use-
ful for concluding a overall growth in runtime overhead. However, since the scheduling
algorithm shows, in spite of the random amount of iterations, a quadratic runtime scaling,
regression is applied and plotted in 6.10 alongside with the raw measurements for a min-
imum amount of 2, 10 and 30 iterations.
Quadratic regression is also applied to the averaged measurements of the plain random
mapping algorithm and plotted in figure 6.11. The quadratic regression’s results are pre-
sented in table 6.2.
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Figure 6.9: Runtime Overhead of the Round Based Scheduler’s Priority Definitions

Random Mapping Algorithm Quadratic Regression C.C.3r
Enhanced (min. it. = 2) 6, 394 · x2 − 70, 882 · x+ 2, 753, 900 0.986696
Enhanced (min. it. = 10) 8, 491 · x2 + 248.572 · x+ 2, 072, 000 0.971705
Enhanced (min. it. = 30) 10, 911 · x2 + 504, 508 · x+ 5, 254, 200 0.985732

Plain 330.7 · x2 + 13, 240 · x− 2, 814 0.99942

Table 6.2: Quadratic Regression Results for the Plain Random Mapping Runtime Over-
head

6.6 Memory Overhead

This section examines the memory overhead caused by enabling co-scheduling capabili-
ties. Since the introduced memory structures need space to reside in, the extent of higher
memory utilization is to be examined. This section will analyze the memory overhead
caused by both data structures that are introduced, ie. the CSIMF and the CSI files.

3Correlation Coefficient
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Figure 6.10: Runtime Overhead of the Enhanced Random Based Scheduler
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Name Type Size (Bytes)
Access Mutex pthread mutex t 40B

Mutex Attribute pthread mutexattr t 4B
Status int 4B

Master Process’ ID int 4B
Amount of CSIMF Entries size t 8B

Sum 64B

Table 6.3: Memory Requirement of CSIMF’s Header

6.6.1 Memory Overhead Caused by the Co-Scheduling
Information Management File

The memory requirement for the CSIMF is the sum of all its header fields and the sum
of the fields in the payload times the amount of entries that are currently stored in the
CSIMF. The amount of CSIMF entries is equal to the number of tasks that all HALadapt
instances in the system have enqueue and not running. The memory requirement for the
header is independent from the state of the system and has a fixed length. The sizes of
the header’s data fields are given in table 6.3. The length of CSIMF’s payload is fixed,
too. However, its amount varies with the state of the system. The memory requirement is
depicted in table 6.4.
The maximum size of the CSIMF has been statically set to 256KiB, which leaves 262,080
Bytes for CSIMF entries. This allows up to 1,885 CSIMF entries to fit into the CSIMF.
Consequently, 1,885 tasks can reside alongside in the CSIMF and can theoretically be
co-scheduled. The size can be in- or decreased at compile time, allowing for a lighter
memory requirement, or space for more co-existing tasks.

6.6.2 Memory Overhead Caused by the Co-Scheduling
Information

The memory requirement for the CSI files can be calculated by summing the size of its
data fields up. Important is the variable length of both the CSI file’s header and the varying
amount of payload entries. The header varies in length since it depends on the amount of
dependencies and reverse dependencies of the respective task, whereas the payload varies
with the amount of entries in HALadapt’s history database for the respective task. The
header fields and their size is given table 6.5. Note that the stated sum of 32 bytes is equal
to the minimum size of a CSI file’s header, namely the one without any dependencies or
reverse dependencies. However, an average of 3 dependencies and 1 reverse dependency
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Name Type Size (Bytes)
Name char[DLS NAME LENGTH] 64B

Access Mutex pthread mutex t 40B
Mutex Attribute pthread mutexattr t 4B

Owner’s Process ID int 4B
File Descriptor int 4B
Scheduled Flag char 1B

Ready Flag char 1B
Priority size t 8B
Round size t 8B

Time of Creation dls time t 8B
Device Offset unsigned int 4B
Has CPU Flag char 1B
Has OMP Flag char 1B
Has GPU Flag char 1B

Has CUDA Flag char 1B
Has OCL Flag char 1B

Sum 139B

Table 6.4: Memory Requirement of CSIMF’s Payload

is observed when using HALadapt’s internal task graph scheduler. Therefore, a more
realistic memory requirement of 8B + (3 · 64B) + 8B + (1 · 64B) + 8B + 8B = 288B
is observed.
In contrast, the payload of a CSI file has a fixed length. Nevertheless, the amount of stored
entries varies. In practice, no more entries than 50 are observed. However, this depends
on the amount of execution devices in the system as well as on the extent of profiled
executions. Therefore, the size of a CSI has been chosen to be 2KiB, offering 560 bytes
more space than required in the aforementioned scenario. Likewise the CSIMF, the CSI
file’s size can be adjusted at compile time in order to fit special requirements. The CSI’s
payload size if given in 6.6.

6.6.3 Overall Memory Overhead

Comprising the above shown facts, the memory requirement of the co-scheduling features
is at least the sum of the size of the mandatory CSIMF and one CSI file, since there can be
no co-scheduling without any task. Therefore, a minimal overall memory requirement is
equal to 256KiB + 2KiB = 264, 192B. As the interesting cases contain more than one
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Name Type Size (Bytes)
Amount of Dependencies size t 8B
ID of Dependency 1...n char[DLS NAME LENGTH] {64B}∗

Amount of Reverse Dependencies size t 8B
ID of Reverse Dependency 1...m char[DLS NAME LENGTH] {64B}∗

Best Index size t 8B
Amount of Payload Entries size t 8B

Sum ≥32B

Table 6.5: Memory Requirement of CSI’s Header

Name Type Size (Bytes)
Programming Model enum impl pmodel 4B

Runtime dls hist key 8B
Threads dls hist key 8B

Sum 20B

Table 6.6: Memory Requirement of CSI’s Payload

task in the system, the memory requirement is greater than that number in practice. It can
be described by following equation: mem overhead = 256KiB + (2KiB ·#tasks)
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7 Summary

This chapter serves as a recapitulation of the topic and purpose of this thesis. The problem
to address is explained briefly before explaining the methodology used in order to reach
the thesis’ goals. Lastly, an outlook on what can be further done, based upon the hereby
work presented.

7.1 Co-Scheduling of Multiple Processes in
Heterogeneous Systems

Increasing demand for computational power whilst facing physical limitations has led to
use of massive on-node parallelism in high performance computing. So called heteroge-
neous nodes are equipped with parallel architectures, or accelerators, in order to increase
system’s throughput. However, since not all computational tasks can benefit from the
high degree of parallelism, inefficient hardware usage is likely to occur. This thesis pro-
poses making use of multiple processes’ inherent data independence from each other to
increase computing node utilization by co-scheduling them to the same computation node.
Approach and implementation of mechanisms for establishing inter-process task aware-
ness, along with a co-scheduler that enables process-wide re-arrangement of these tasks
is presented. Measurements show possible speedups up to 136.22% while making nearly
full use of all hardware resources in case of heterogeneous computing, and increased
hardware usage as well as a more fair hardware allocation in the homogeneous case.

7.2 Goals Reached

This section recapitulates the goals from section 1.2 and presents what has been done for
their achievement. The goals are:

1. Detect inefficient schedule of multiple processes’ tasks

2. Determine point in time when to co-schedule, preventing large overhead
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3. Enable inter-process communication

4. Create data structures that contain data required for a useful co-scheduling

5. Introduce mechanism that finds a co-schedule using the customized data structures

6. Implement these mechanisms into the runtime system “HALadapt”

7. Demonstrate enabled speed up by running suitable benchmarks

Goals 1 and 2 have been combined by introducing 4 different mechanisms that allow de-
tection of a possible better co-scheduling of multiple processes’ tasks and, based on their
policy, also the determination for need of a co-scheduling.
Inter-process communication is achieved by making use of the shared memory. This also
allows for any other application to access the data used for a co-scheduling, allowing for
example external scheduling applications to compute a co-schedule.
Required data structures and their management are introduced by this thesis. The reside
in the system’s shared memory, as mentioned before.
Multiple co-schedulers are implemented, comprising a greedy algorithm and two random
based mapping procedures. They use the introduced shared memory data structures for
receiving data from the processes and also for instructing the processes to adhere to the
new schedule. This task could also be offloaded to any scheduling application that han-
dles the introduced shared memory data structures properly.
For evaluation purposes, the co-scheduling features has been integrated into the runtime
system “HALadapt”. Some amendments to it were necessary to support the features as
desired.
Benchmarks show a possible speedup of 136.22% when co-scheduling processes’ tasks
compared to a conventional execution. The system’s hardware load is thereby increased
significantly.

In retrospection, all goals set for this thesis are reached. On top, faster executions are
enabled and an extensible interface for co-scheduling tasks of multiple processes in hete-
rogeneous computing is achieved.

7.3 Outlook

This section briefly outlines on further effort can be spent. These are fields that come up
alongside with the presented, implemented and evaluated ideas.
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Security Enhancements

Since the shared memory is used for inter-process communication, every process has ac-
cess to the co-scheduling information. This is, on the one hand, a desired property, but
on the other hand arising security issues. Deleting the CSIMF or any CSI file causes
undefined behavior of the HALadapt instances. Unless users are sufficiently trusted and
instructed to proper usage of the shared memory files, security mechanisms should be
considered. Marking the shared memory files as read-only also restricts the HALadapt
instances from creating their CSI files and registering them in the CSIMF. Selective file
access for user groups is an option, but introduces nonadministrative overhead.

Adding Schedulers

The shared memory interface is scheduler invariant. Any scheduling mechanism can read
from the CSIMF and CSI files and write its schedule to them. This thesis does not focus
on finding an optimal schedule, and the round based scheduler is likely to run into local
extrema. A evolutionary scheduling algorithm was desired to be implemented in this the-
sis, but was omitted due to time shortage. Its implementation is pending.

Optimizing Task Graph Exit

The premature task graph exit does not omit memory allocations on the accelerator that
has been chosen for execution in the outdated task graph. Merely skipping them does
not notify tasks that depend on this memory allocation, ending up with a blocked task
graph exit. More effort can be spent on optimizing the premature task graph exit pro-
cedure. However, this requires deeper knowledge of the internal locking an signaling
mechanisms of HALadapt.

More Detailed Evaluation

Evaluation of the co-scheduling determination criteria has not been realized thoroughly.
Finding a suitable scenario in which the respective determination criteria shows different,
measurable and reproducible behavior is pending. At this point, one can only derive
from the evaluation that the runtime overhead of the respective co-scheduling criteria is
vanishingly low.
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The evaluation of the stickiness feature and the co-scheduling impact with more than two
processes is pending also.
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Appendix

List of Abbreviations

AMD Advanced Micro Devices

API Application Programming Interface

ASIC Application Specific Integrated Circiut

CAPP Computer Architecture and Parallel Processing

CMOS Complementary Metal-Oxide-Semiconductor

CMP Chip Multiprocessor

CPU Central Processing Unit

CSI Co-Scheduling Information

CSIMF Co-Scheduling Information Management File

CUDA Computing Unified Device Architecture

DAG Directed Acyclic Graph

FIFO First In, First Out

FPGA Field Programmable Gate Array

GHz Gigahertz

GPU Graphics Processing Unit

HEFT Heterogeneous Earliest Finish Time

HPC High Performance Computing

HT Hyper Threading

I/O Input / Output

ILP Instruction Level Parallelism

IPC Instructions per Cycle
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7 Summary

IPCF Inter-Process Communication File

IPM Integer Programming Model

ITEC Institute of Computer Science & Engineering

KIT Karlsruhe Institute of Technology

LAMA Library for Accelerated Math Applications

LTS Long Time Support

LWP Light-Weight Process

MAP Multidimensional Assignment Problem

MLEM Maximum Likelihood Expectation Maximization

MPI Message Passing Interface

OCL Open Computing Language

OMP Open Multi-Processing

OpenSURF Open source Speeded Up Robust Feature

PF Particle Filter

POSIX Portable Operating System Interface
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